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a b s t r a c t

Capacity reservation contracts allow a consumer to purchase up to a certain capacity at a unit price lower
than that of the spot market, while the consumer’s excess orders are realized at the spot price. In this
paper,we consider a lot sizing problemwhere the consumer places orders following a capacity reservation
contract. In particular, we study the general problem and the polynomial time solvable special cases of
the problem and propose corresponding algorithms for them.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Consider a scenario where a retailer (she) keeps a long-term
contract with a manufacturer (he). In return for the retailer’s reg-
ular purchases, the manufacturer offers the retailer products up to
a given capacity at a unit price lower than the spot price. When
the retailer’s desired procurement quantity exceeds the reserva-
tion capacity, she has to realize the excess quantity at the spot
price from the same supplier. Known as capacity reservation con-
tracts, such contracts are extensively used for purchasing chemi-
cals, commodity metals, semiconductors and electric power [18].
The capacity reservation model can also be applied to production
models where extra cost is incurred due to overtime production or
the outsourcing part of production.

Formally, we consider the capacity reservation contracts with
two parameters, c , the unit purchasing price specified by the ca-
pacity reservation contract, andQ , the given capacity. Suppose that
the fixed ordering cost is K , the spot price is s, and the retailer’s
procurement quantity is q. Then, to realize all her demand, the re-
tailer’s purchasing cost is

Y (q) =

0 q = 0
K + cq 0 < q ≤ Q
K + cQ + s(q− Q ) Q < q

(1)

or we could equivalently write Y (q) = K1{q>0} + cq+ (s− c)(q−
Q )+, where (·)+ = max{·, 0}.

Capacity reservation contracts are frequently used in procure-
ment and transportation. For example, Jin and Wu [17] and Erkoc
and Wu [10] consider the capacity reservation contracts for the
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high-tech industry. van Nordena and van de Veldeb [22] first study
the dynamic lot sizing problem with a transportation capacity
reservation contract. Inderfurth and Kelle [16] consider the com-
bined use of capacity reservation contracts and the spot market in
the newsvendor model.

Similar contracts are also studied by several researchers. Henig
et al. [14] study a periodic-review inventory-controlmodel. In their
model, when the order quantity is below a given volume, the or-
dering cost is zero, otherwise the cost is linear in the exceeding
quantity. Chao and Zipkin [4] consider a similar problem, where
a fixed cost is incurred if the order quantity is above the volume.
Caliskan-Demirag et al. [3] study a periodic-review inventory prob-
lem where the fixed cost depends on the order quantity.

Ourwork, on the other hand, is an extension of the economic lot
sizing problem, with deterministic and time varying demand, ca-
pacity and cost parameters. The goal is to find a plan thatminimizes
the total inventory and procurement cost. Wagner andWhitin [24]
first develop an O(T 2) dynamic programming algorithm for the
general lot sizing problem, also known as the WW problem. Later
research works focus on studying algorithm complexity for differ-
entmodels; see [20] for example. TheO(T 2)dynamic programming
algorithm was improved independently by Aggarwal and Park [1],
Federgruen and Tzur [11] and Wagelmans et al. [23] who devel-
oped an O(T log T ) algorithm for the general problem. The capac-
itated lot sizing problem (CLSP) can be viewed as a generalization
of the WW problem. Known to be N P -hard [2,13], many heuris-
tics are designed for the CLSP problem [8,15]. Readers might refer
to [9] for a survey of lot sizing problems.

The capacity reservation model discussed in this paper could
be conveniently viewed as an extension of the CLSP problem, since
an algorithm for the lot sizing problem with capacity reservation
(LS-CR) could always be applied to a capacitated lot sizing problem
by setting the spot price to infinity at every time slot. The LS-CR
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Fig. 1. The relationship between different problems.

Table 1
Complexity of different models.

NI/G/NI/ND G/G/G/C

Traditional model O(T 2)a O(T 3)b

Our model O(T 3) O(T 4)

a See [6] for details.
b See [22] for details.

problem, on the other hand, is a special case of the lot sizing prob-
lemwith piecewise linear production costs (LS-PLC). Chen et al. [5]
present an efficient dynamic programming algorithm for the gen-
eral LS-PLC problem with computational results, and Shaw and
Wagelmans [19] propose a pseudo-polynomial time algorithm.We
characterize the relationship between the different lot sizing prob-
lems in Fig. 1.

Although the capacitated problems are quite difficult to solve
in general, many special cases have polynomial time algorithms.
Bitran and Yanasse [2] design a classification scheme for the ca-
pacitated lot sizing problem, and introduce the four field notation
α/β/γ /δ, where α, β, γ and δ represent the setup cost (fixed or-
dering cost in our model), unit holding cost, unit production cost
(unit purchasing cost from long-term contract and spot market
price in our model), and capacity type (reservation quantity in our
model), respectively. Each of the parameters might have an ar-
bitrary pattern (general, G), be constant (C), nondecreasing (ND),
nonincreasing (NI) or zero (Z). Different from the scheme,we allow
unlimited purchase from the spot market (at a potentially higher
price) when the reservation quantity is exhausted, and thus a fea-
sible solution always exists. It should be noted that when γ = C
(resp., NI,ND), both the unit purchasing prices specified in the ca-
pacity reservation contract and the spot prices are stationary (resp.,
nonincreasing, nondecreasing) over all time periods.

In this paper, we focus on the following two models: NI/G/
NI/ND and G/G/G/C , both of which are known to have polynomial
time algorithms in the classic model but not known in the capac-
ity reservationmodel. In thiswork,we show that bothmodels have
polynomial time algorithms in the capacity reservationmodel, and
we present our results in Table 1.

2. Problem formulation and computational complexity

Consider the problem with T horizons, and the capacity reser-
vation contract specifies unit purchasing cost ci and capacity qi for
period i ∈ {1, . . . , T }. The inventory holding cost for period i is
hi, while backorders are not allowed. The demand in period i is di,
which is known prior to the making of the purchase decision. In
the general model, the fixed ordering cost for period i is Ki. The
spot price in time i is si, where si > ci, implying that the spot price
is always higher than price within the given capacity. All costs are
nonnegative and the capacity is strictly positive.

The decision variables qi are the purchasing quantities in peri-
ods i, i = 1, . . . , T , and the objective is tominimize the purchasing
costs and inventory costs,

min
T

i=1

Ki1{qi>0} + ciqi + (si − ci)(qi − Qi)
+
+ hiIi

where Ii represents the inventory level at the end of period i. The
program is subject to the following constraints:
• Balance of the inventory:

Ii−1 + qi − di = Ii.

• Nonnegativity:

qi ≥ 0, Ii ≥ 0.

• And the initial inventory level is zero:

I0 = 0.

The dynamic lot sizing problem without fixed ordering cost is
the case Ki = 0 for every i.

The general lot sizing problemwith capacity reservation isN P -
hard due to the N P -hardness of its special case, i.e., the capac-
itated lot sizing problem. In fact, the problem remains N P -hard
even if we put stronger restrictions on the problem, including the
classes C/Z/NI/NI, C/Z/ND/ND,ND/Z/Z/ND,NI/Z/Z/NI , C/G/
Z/NI and C/C/ND/NI; see [2] for proofs.

A straightforward dynamic programming algorithm could solve
the general problem in time O(T 3d

2
), where d denotes the average

demand over all periods.
More efficient algorithms could be explored for the general

problem. Shaw and Wagelmans [19] show that the capacitated lot
sizing problemwith piecewise linear production cost functions can
be solved in O(T 2qd) time, where q is the average number of pieces
needed to represent the linear cost function.

As discussed before, it would be convenient to view the lot siz-
ing problem in the capacity reservation model as a special case
of the piecewise cost function model; therefore we immediately
come up with the following result: there exists an O(T 2d) algo-
rithm for the lot sizing problem in the capacity reservation model.
Since the general problem is N P -hard, this pseudo-polynomial
time algorithm is quite useful.

When there is no fixed ordering cost, the lot sizing problem
is solvable in time O(T log T ) by simply keeping a sorted list of
available purchasing alternatives.

3. The NI/G/NI/ND class reservation problem

Although the lot sizing problem in the capacity reservation
model is N P -hard in general, it is still possible to solve some spe-
cial cases of the problem quite efficiently. Bitran and Yanasse [2]
first design an O(T 4) algorithm for the NI/G/NI/ND capacitated
lot sizing problem, and Chung and Lin [6] improve their result to
O(T 2). Motivated by their work, we study the NI/G/NI/ND class
problem in the capacity reservation model.

For the NI/G/NI/ND problem, over the time, the setup costs Ki
are nonincreasing, the unit holding costs have arbitrary pattern,
the unit purchasing cost ci and si are nonincreasing and the capac-
ities Qi are nondecreasing. The traditional approaches (cf. [6]) for
the capacitated lot sizing problem use the idea of a subplan, and so
do we.

Definition 1. A subplan Suv is the part of plan covering the demand
from u + 1 to v such that Iu = 0, Iv = 0 and It > 0 for any
u < t < v.

To develop our algorithm for the NI/G/NI/ND class, observe that

f (t) = min
1≤u<t
{f (u)+ C(Sut)} (2)

where C(Sut) is used to denote the minimum cost of the subplan
Sut , while f (t) represents the optimal objective function value for
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the subplan including the first t periods, with I0 = It = 0. In the
optimal solution, the remaining inventory at the end of the plan-
ning horizon should be zero, i.e., IT = 0, so our objective is to
solve the T -period problem f (T ). It follows straightforwardly that
if we could compute the optimal solution for every subplan Suv ef-
ficiently, the whole problem would be solved.

There may be multiple optimal plans that minimize the total
cost. To break ties, we use a tie-breaking rule called minimality of
sum. That is, if there are multiple optimal solutions, we pick the
one that minimizes the sum

T
i=1(qi + Ii). The same tie-breaking

rule is used in [7].

Theorem 1. For any optimal plan that minimizes the sum
T

i=1(qi+
Ii), any of its subplans Suv , with u + 1 = i1 < · · · < ik ≤ v being
ordering points to cover the demand from u + 1 to v, would tolerate
only one of the following cases.
• Case 1. qi1 ≤ Qi1 and qit = Qit for every 1 < t ≤ k, or
• Case 2. qik ≥ Qik and qit = Qit for every 1 ≤ t < k.

Proof. To prove the theorem, it suffices to show the following:
(1) if qit < Qit , then t = 1; (2) if qit > Qit , then t = k; (3) qi1 < Qi1
and qik > Qik cannot happen simultaneously.

Let us start with (1). Assume that qit < Qit for some t > 1.
If there are more than one such points, let t be the smallest value
such that 1 < t and qit < Qit .We consider a newplan for thewhole
problem by changing qi1 ← qi1 − 1 and qit ← qit + 1; denote the
new plan by q′. Since Ii > 0 for any i1 ≤ i < it in the original
plan, the new plan is feasible. In addition, based on the definition
of NI/G/NI/ND, we have si1 > ci1 ≥ cit , which implies that the
new plan costs no more than the old plan. If the new plan costs
less, then the optimality of the original plan is violated. Otherwise,
because our perturbation deceases qi1 by 1, increases qit by 1, and
decreases Ix by 1 for any i1 ≤ x < it , the original plan violates the
supposed minimality of sum. This completes the proof.

As for (2), assume that qit > Qit for some t < k (if there aremul-
tiple such points, let t be the largest one), and consider a new plan
for thewhole problem by changing qit ← qit −1 and qik ← qik+1.
Since Ii > 0 for any it ≤ i < ik in the original plan, the new plan is
feasible. Note that sit ≥ sik > cik ; the new plan is at least as good
as the original one. Similar to (1), if the new plan costs less, then
the optimality of the original plan is violated. If both plans have the
same cost, the new plan has smaller sum

T
i=1(qi + Ii); hence the

original plan violates the supposed minimality of sum.
As for (3), we decrease qi1 by 1 and increase qik by 1, and denote

the new plan q′ (the feasibility of the new plan follows from the
property of subplan); because of the optimality of q, we have the
following result:

ci1 +
ik−1
j=i1

hj ≤ sik .

Similarly, we increase qi1 by 1 and decrease qik by 1, and denote
the new plan q′′. Still, the optimality of q yields the following re-
sult immediately:

ci1 +
ik−1
j=i1

hj ≥ sik .

Therefore we must have

sik ≤ si1 +
ik−1
j=i1

hj ≤ sik .

So the two inequalities must be tight, i.e., ci1 +
ik−1

j=i1
hj = sik .

Therefore, both q′ and q′′ are optimal plans. However, as q′ has
smaller sum

T
i=1(qi + Ii), the supposed minimality of sum is vio-

lated in the original plan q. �
Based on Theorem1,we could compute the optimal strategy for
each subplan by considering the two cases respectively, and pick
the cheaper one as the optimal solution. To solve each case, the
property of the class requires us to order as late as possible, as the
following lemma shows.

Lemma 1. There exists an optimal production plan such that for any
subplan Suv , if j is an ordering point and j+1 is not an ordering point,
then deferring the orders placed at j to j + 1 would make the plan
infeasible.

Proof. Otherwise, if the newplan is still feasible, since j+1 has less
fixed ordering cost, less procurement cost and larger capacity, the
new plan is at least as good as the previous one. We could repeat
this process until all orders could not be deferred, and the plan is
our desired one. �

The optimal strategy corresponding to Case 1 could be com-
puted using the algorithm presented by [6], and to be complete,
we briefly introduce their approach here.

Beginning with ik+1 = v+ 1, inductively pick it < it+1. Follow-
ing Lemma 1, the property of it is that it is the largest i < it+1 such
that the capacity Qik + · · · + Qit+1 + Qi cannot cover the demand
from period i to v. The optimal Case 1 strategy could be computed
in time O(T 2) for all subplans.

Consider Case 2 where we order in each subplan exactly the
capacity at every ordering point except the last one, at which we
could ordermore than the capacity. Then, given the ordering points
i1, . . . , ik, the ordering strategy can be uniquely determined, so all
we need to do is to find the ordering points.

To find the ordering points, we enumerate the last ordering
point in the subplan, i.e., ik. Given a subplan Suv , we first compute
a standard strategy.

Algorithm 1. • Step 1. Start with i = u and qj = 0 for every
u+ 1 ≤ j ≤ v.
• Step 2. Find the smallest j with i < j ≤ v such that Ij < 0; if no

such j exists, the algorithm completes.
• Step 3. Set i = j. For k = j, j−1, . . . , u+1: set qk = Qk; if Ij ≥ 0,

immediately goto Step 2, otherwise continue the process until
Ij ≥ 0.

Let j1 < · · · < jm be the ordering points obtained using Algo-
rithm1. To better illustrate the idea, consider the following subplan
S05. The demand for day 1 to 5 is respectively given by d1 = 10,
d2 = 10, d3 = 40, d4 = 10 and d5 = 10. The capacity is the same
for all days with Qi = 25, and initialize the order to qi = 0. Since
I1 = −10 < 0, we update the subplan to (q1, q2, q3, q4, q5) = (25,
0, 0, 0, 0). Now, we have I1 = 15, I2 = 5 and I3 = −35 < 0. Then,
we update the solution to (q1, q2, q3, q4, q5) = (25, 0, 25, 0, 0).
Note that I3 = −10 is still below zero. Then, we update the solu-
tion to (q1, q2, q3, q4, q5) = (25, 25, 25, 0, 0), and I3 = 15, I4 = 5
and I5 = −5 < 0. Then, by setting (q1, q2, q3, q4, q5) = (25, 25,
25, 0, 25) we have I5 > 0. Hence, the output of the algorithm is
j1 = 1, j2 = 2, j3 = 3 and j4 = 5.

Now we claim the following.

Theorem 2. For Case 2 described above, there exists an optimal
solution q of subplan Suv such that its ordering points can be denoted
as j1, . . . , jk for some k ≤ m.

Proof. First we note that Theorem 2 is equivalent to the statement
that ‘‘for some optimal subplan with ordering point i1 < · · · < ik,
there is no 1 ≤ t ≤ k such that it ≠ jt ’’.

Now consider an optimal subplan where 1 ≤ t ≤ k is the first
point such that the statement is violated, i.e., it ≠ jt . Note that
it < jt , otherwise the subplan would be infeasible.

To show this claim, assume that jv is the first among j’s such
that jv is the first non-ordering point in the optimal solution, i.e.,
jv ∉ {i1, . . . , ik} and {j1, . . . , jv−1} ⊂ {i1, . . . , ik}. If there is no
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such jv , let jv = jm. Consider an alternative solution q′ obtained
by setting q′it ← 0 and q′jv ← qit , q

′

i ← qi for other points. That is,
q′ is obtained by moving the order from it to jv in q, it < jt ≤ jv .
Based on the property of NI/G/NI/ND, we have C(q′) ≤ C(q), and
it suffices to show that q′ is feasible. Since j1, . . . , jv is feasible for
points up to jv , and j1, . . . , jv are all ordering points in q′, so q′ is
feasible for points up to jv .

If in q′, there is still some it ′ ≠ jt ′ , we repeat the above process
until the theorem is satisfied. This proves the theorem. �

For any subplan, it suffices to study the following candidates
for the optimal solution: j1 < · · · < jk, k = 1, . . . ,m, where
m ≤ T . When the cost of solution j1, . . . , jt is known, the cost
of j1, . . . , jt+1 could be computed in time O(1). As there are O(T 2)
subplans, it takes O(T 3) to find the Case 2 solutions to all subplans.
Based on (2), we have the following theorem.

Theorem 3. There is an O(T 3) algorithm for the class NI/G/NI/ND.

4. The G/G/G/C class reservation problem

In this section, we consider the economic lot sizing problem
with constant capacities. The original problem without capacity
reservationwas known to be solvable inO(T 4) [12], and vanHoesel
and Wagelmans [21] later improved the algorithm to solve the
problem in time O(T 3).

Since the capacity constraints (which are reservation quantities
here) are constant over all periods, in this section, we use Q to
replace Qi for every time slot i.

Theorem 4. For any optimal plan that minimizes the sum
T

i=u+1
(qi + Ii), any of its subplans Suv , with u + 1 = i1 < · · · < ik ≤ v
being ordering points to cover the demand from u+1 to v, its optimal
solution (qu+1, . . . , qv) should have the following property: if qix ≠
Q for some 1 ≤ x ≤ k, then qiy = Q for every 1 ≤ y ≤ k, y ≠ x.
Proof. Suppose that there exists an optimal solution to the subplan
Suv such that there exist two different ordering points 1 ≤ x < y ≤
k such that qix ≠ Q and qiy ≠ Q , and among all optimal plans, it
minimizes

T
i=u+1(qi + Ii). As qix and qiy are both ordering points,

we have qix > 0 and qiy > 0.
We consider a new plan q′ by changing qix ← qix − 1 and

qiy ← qiy + 1, and another new plan q′′ by changing qix ← qix + 1
and qiy ← qiy−1. Using the property of subplan, we figure out im-
mediately that both new plans are feasible solutions. Since C (q) ≤
C


q′


, C (q) ≤ C(q′′), we have cix +

iy−1
j=ix hj ≤ siy and cix +

iy−1
j=ix

hj ≥ siy ; therefore both inequalities are tight and we have C (q) =
C


q′


= C(q′′), so in terms of costs, q′ is as good as q, i.e., they

are both optimal plans. However, by definition, q′ has smaller sumT
i=u+1(qi + Ii); hence the supposed minimality of sum property

is violated in q.

Based on Theorem 4, we immediately have the following
corollary.

Corollary 1. For the G/G/G/C problem in the capacity reservation
model, there exists an optimal solution such that for every subplan
Suv , the ordering points u+ 1 = i1 < · · · ik ≤ v satisfy that
• There exists a 1 ≤ t ≤ k such that qit = duv − (k − 1)Q , where

du,v denotes the demand from u to v − 1.
• For every 1 ≤ x ≤ k and x ≠ t, we have qix = Q .

Further, we could also show the following.

Corollary 2. For the G/G/G/C problem in the capacity reservation
model, there exists an optimal solution such that for every subplan Suv
and any u+ 1 ≤ k ≤ v we have that
•

k
i=u+1 qi mod Q = 0 or

k
i=u+1 qi mod Q = ∆,

• ⌊
k

i=u+1 qi/Q ⌋ ≤ v− u or ⌊
k

i=u+1 qi/Q ⌋ ≥ ⌊du,v/Q ⌋− v+ u,
where ∆ = du,v mod Q .
Note that if there exists an i ≤ k such that qi mod Q = ∆, then
(
v

k+1 qi)/Q ≤ (v − k) ≤ (v − u) and hence ⌊
k

i=u+1 qi/Q ⌋ ≥
⌊du,v/Q ⌋ − v + u. Otherwise,

k
u+1 qi ≤ (k − u) ≤ (v − u) and

hence ⌊
k

i=u+1 qi/Q ⌋ ≤ v − u.
Based on Corollary 2, for any subplan Suv , we call u+1 ≤ k ≤ v

a type 0 point with order j iff
k

i=u+1 qi mod Q = 0 and
k

i=u+1

qi/Q = j; call it a type 1 point with order j iff
k

i=u+1 qi mod Q =
∆ and ⌊

k
i=u+1 qi/Q ⌋ = j. Let C(k, x, j) denote the minimum cost

from u+1 to k, given that k is a type x pointwith order j. C(k, x, j) is
computed using dynamic programming in the followingway. Note
that in the following process we are only interested in j such that
j ≤ v − u or ⌊du,v/Q ⌋ − v + u ≤ j ≤ ⌊du,v/Q ⌋, as shown in Corol-
lary 2. j ≤ ⌊du,v/Q ⌋ holds intuitively because we would not order
more than the actual demand.
• For a type 0 point, we have

C(k, 0, j) = min{C(k− 1, 0, j)
+ (jQ − du,k−1)hk−1, C(k− 1, 0, j− 1)
+ (jQ − du,k−1 − Q )hk−1 + Kk + Qck}.

• For a type 1 point, we have four subtypes, and the cost is mini-
mized over the subtypes, C(k, 1, j) = min1≤i≤4 Ci(k, 1, j).
– Subtype 1.1: qk = Q or qk = 0, which implies that in the

solution, we order nothing or Q in time slot k, and hence the
cost C1(k, 1, j) is the minimum over the two cases:
C1(k, 1, j) = min{C(k− 1, 1, j)+ (jQ +∆− du,k−1)

× hk−1, C(k− 1, 1, j− 1)+ (jQ +∆

− du,k−1 − Q )hk−1 + Kk + Qck}.
– Subtype 1.2: qk = ∆, which implies that in the solution, we

order ∆ in time slot k:
C2(k, 1, j) = C(k− 1, 0, j)+ (jQ − du,k−1)hk−1 + Kk + ck∆.

– Subtype 1.3: qk = Q +∆, which implies that in the solution,
we order Q +∆ in time slot k:
C3(k, 1, j) = C(k− 1, 0, j− 1)+ (jQ − du,k−1 − Q )

× hk−1 + Kk + sk∆+ Qck.
– Subtype 1.4: qk > Q +∆, which implies that in the solution,

we order tQ + ∆ in time slot k for some t > 1. To make the
computation more efficient, we use a dynamic programming
to cumulate the cost from (t−1)Q +∆ to tQ +∆, as follows:
C4(k, 1, j) = min{C3(k, 1, j− 1)+ Qsk,

C4(k, 1, j− 1)+ Qsk}.
• For any k, we still need to check the feasibility of the plans. If

jQ + ∆ < du,k, then the plan is infeasible and C(k, i, j) should
be reset to+∞.

Theorem 5. There is an O(T 4) algorithm for the class G/G/G/C.

Proof. First, for each subplan, our goal is to compute C(v, 1, ⌊du,v/
Q ⌋), the minimum cost. The simple dynamic programming algo-
rithm is solvable in time O(T 2); hence every subplan could be opti-
mally computed in O(T 2). There are O(T 2) subplans, and so it takes
O(T 4) to solve all the subplans. Thenwe could compute the optimal
solution to the global problem using the shortest path algorithm,
which takes an additional time O(T 2). Therefore the global prob-
lem can be solved in O(T 4). �

5. Conclusion and future research

The capacity reservation model is a generalization of the ca-
pacitated economic lot sizing problem. Despite the N P -hardness
of solving the general model, in this paper, we are able to solve
two special cases, NI/G/NI/ND and G/G/G/C with time O(T 3) and
O(T 4), respectively.

There are several interesting problems to be explored in the fu-
ture. Although it is straightforward to see that the capacity reser-
vation model is harder than the capacitated lot sizing problem, we
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Table 2
Computational complexity of other polynomial time solvable classes.

NZ/D/NZ/NI C/Z/C/G

Capacitated lot sizing O(T ) O(T log T )

Capacity reservation model O(T ) O(T 2)

are not able to separate the two complexity classes, i.e., we are not
sure if there exists a class α/β/γ /δ which has polynomial time al-
gorithms in the capacitated lot sizingmodel, but isN P -hard in the
capacity reservationmodel. If the answer is no, couldwe find a gen-
eral approach to construct polynomial time algorithms for the ca-
pacity reservation model from traditional models? It is not known
if there exists a model α/β/γ /δ such that the two models have
different computational complexities, if they are both polynomial
time solvable. Table 2 summarizes the computational complexity
of other classes that are known to be solvable in polynomial time
given by [2].

Except from those theoretical issues, finding practical algo-
rithms for other classes and improving current algorithms is inter-
esting. It also remains open to generalize the result to the piecewise
linear cost function model.
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