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Abstract: In this article, we consider a loss-averse newsvendor with stochastic demand. The newsvendor might procure options
when demand is unknown, and decide how many options to execute only after demand is revealed. If the newsvendor reserves too
many options, he would incur high reservation costs. Yet reserving too few could result in lost sales. So the newsvendor faces a
trade-off between reservation costs and losing sales. When there are multiple options available, the newsvendor has to consider how
many units of each to reserve by studying the trade-off between flexibility and costs. We show how the newsvendor’s loss aversion
behavior affects his ordering decision, and propose an efficient algorithm to compute his optimal solution in the general case with n
options. We also present examples showing how the newsvendor’s ordering strategy changes as loss aversion rises. © 2014 Wiley
Periodicals, Inc. Naval Research Logistics 62: 46–59, 2015
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1. INTRODUCTION

We consider a retailer who, as in the newsvendor prob-
lem, faces a random demand volume over a single sales
season. To cover the random demand, the retailer may, at
the beginning of the season, avail herself of various supply
contracts, offered by the same or different suppliers. A sup-
ply contract is characterized by two parameters: a per unit
reservation price and a per unit execution price. Within each
contract, the retailer selects the reservation quantity and pays
the reservation price for each reserved unit. After the sea-
son’s demand is revealed, the contract allows the retailer to
request delivery of any desired amount up to the reserved
quantity, at the additional per unit execution price. The retailer
faces the problem of determining an optimal combination of
reservation quantities, one for each of the available contracts.

This problem was studied by Martínez-de-Albéniz and
Simchi-Levi [24, 25], but under the standard assumption
that the retailer is risk neutral and wishes to maximize her
expected profit. Behavioral economics, in particular prospect
theory (see [31], e.g.), has demonstrated that many decision
makers are loss averse: this means that losses are weighted
much more than gains. A standard way to represent the loss
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aversion phenomenon is to assume that a loss is multiplied by
a factor λ ≥ 1, while a positive gain is taken as is. Clearly, the
larger λ is, the more loss averse the decision maker. When λ

= 1, we have the risk-neural case. The above represents a con-
cave piecewise linear utility function with two linear pieces.
We extend our analysis to more general, concave piecewise
linear utility functions. This allows us to cover risk-neutral
firms facing piecewise linear taxes. It is worth noting that we
are dealing with a more complex problem than that in [25],
because we are faced with quasilinear utility curves and ex
ante we do not know which piece the real solution falls on.

We conduct a numerical study that generates the follow-
ing intuitive insight: the larger the loss aversion, the more the
decision maker is inclined to use option contracts with rela-
tively low reservation prices. Even though the total per unit
procurement cost under these contracts is higher, the upfront
reservation payment is reduced.

The rest of this article is organized as follows. Section 2
reviews the related literature. In Section 3, we introduce and
model the problem. Section 4 studies the problem when there
is only one option available. Section 5 generalizes the single-
option case to the general case with n options, assuming
that the set of active options are known and the cumula-
tive demand function takes the form of a piecewise linear
function. A polynomial algorithm is proposed to compute

© 2014 Wiley Periodicals, Inc.
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the optimal solution. In Section 6, we show how to find the
active options. Section 7 further considers the case where
the cumulative demand is any increasing function and the
case where the utility function is piecewise linear. Section 8
concludes the article.

2. LITERATURE REVIEW

The newsvendor problem has attracted plenty of research
interest. We refer readers to [21] for a survey of the related
research. Various applications of the newsvendor problem
have been found. For example, Prasad et al. [28] consider
the newsvendor problem in advance selling, Koulamas [22]
studies the newsvendor problem with revenue sharing and
channel coordination, and Olivares et al. [26] present a struc-
tural estimation framework for the newsvendor problem with
an application to reserving operating room time.

Recently, a large number of attempts have been made to
extend the standard newsvendor model. A recent survey of
the joint inventory and pricing newsvendor models can be
found in [7]. Ding et al. [12] and Yue et al. [36] study the
newsvendor model in which the demand distribution is only
partially known. Granot and Yin [17, 18] analyze the price-
dependent newsvendor model. Petruzzi et al. [27] study the
newsvendor problem with a consumer search cost. Wang [32]
and Wu et al. [35] study the modified newsvendor model with
advertising.

Some researchers have attempted to consider the decision
bias of the newsvendor, which is defined as the behavior to
deviate from the optimal order quantity. Eeckhoudt et al. [13]
are the first to show that a risk-averse newsvendor would
order strictly less than a risk-neutral newsvendor. Agrawal
and Seshadri [1] consider a risk-averse retailer that makes
order quantity and selling price decisions with the objec-
tive of maximizing expected utility. Su [30] analyzes the
newsvendor problem where newsvendors are prone to errors
and biases. Chen et al. [9] consider a risk-averse newsvendor
model with stochastic price-dependent demand. Choi et al.
[10] consider a multiproduct risk-averse newsvendor under
the law-invariant coherent measures of risk. Risk-aversion is
also studied in multiperiod inventory management [8, 37].

Wang and Webster [34] use loss aversion to consider
the newsvendor’s behavior in the single-period newsven-
dor problem, where an emergency delivery with higher cost
is made when a shortage occurs. Wang [33] considers a
loss-averse newsvendor game where multiple loss-averse
newsvendors compete for inventory from a risk-neutral
supplier.

There are several papers considering flexible contracts
instead of firm ones. Dada et al. [11] study a newsven-
dor procurement problem with unreliable suppliers that
might deliver less than the desired amount. Martínez-de-
Albéniz and Simchi-Levi [24] consider the combined use of

options and the spot market in inventory control. Haksöz and
Seshadri [19] review literature on the use of spot markets in
procurement.

The problem we are tackling is similar to the procurement
management problem using options studied by Martínez-de-
Albéniz and Simchi-Levi [25] and Fu et al. [15, 16], where
to meet future demand a buyer could either procure parts
from suppliers using fixed price contracts and option con-
tracts (before demand uncertainty is resolved), or tap into
the spot market (after demand uncertainty is resolved). Lee
et al. [23] address the same problem but they use capaci-
tated options with fixed ordering costs. Chen and Parlar [6]
consider an extension of the newsvendor model in which a
put option can be purchased to reduce losses resulting from
low demand. Capacity reservation contracts are also used for
capacity expansion (see [20] and [14], e.g.).

Our article contributes to the literature by combining the
behavior of loss-averse customers and the multiple options
contract. In general, we present efficient algorithms that deal
with piecewise linear utility functions and general demand
functions.

3. MODEL SETTING

Let x denote the newsvendor’s stochastic demand, follow-
ing a continuous distribution with cumulative distribution
function F(x) and probability density function (PDF) f (x).
F(x) is assumed to be continuous, differentiable and invert-
ible. Let w > 0 be the wholesale price at which the newsvendor
buys from his supplier, and p > w be the newsvendor’s retail
price. Assume that the unit salvage price s is standardized
to zero, and the newsvendor incurs no penalty or goodwill
cost but he does lose sales when demand exceeds his inven-
tory. We know that a risk-neutral newsvendor’s optimal order
quantity Q∗ is given by

Q∗ = F−1

(
p − w

p

)

We characterize the loss aversion behavior of a newsven-
dor by a constant λ > 1. That is, when the newsvendor’s
profit Y is positive, his utility is Y, otherwise his utility is λY.
This utility function is widely used to represent loss-averse
behavior in economics and management [2, 29, 31].

Now the newsvendor’s problem becomes one of deciding
how much to order to maximize his expected utility. We could
write the newsvendor’s expected utility as

λ

∫ wQ/p

0
(xp − wQ)f (x)dx +

∫ Q

wQ/p

(xp − wQ)f (x)dx

+ (p − w)Q

∫ ∞

Q

f (x)dx

Naval Research Logistics DOI 10.1002/nav
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48 Naval Research Logistics, Vol. 62 (2015)

The first term is the newsvendor’s expected loss (nega-
tive gain) when demand is lower than the inventory level, the
second term is the newsvendor’s expected nonnegative gain
when there is enough inventory to meet all demand, and the
last term is the newsvendor’s expected gain when demand
exceeds the inventory level.

It is then not difficult to see that the above utility is con-
cave in Q. Hence, by considering the first-order condition
(FOC), the newsvendor’s optimal order quantity for a given
λ, Q∗

λ(λ > 1), is given by the following equation

pF(Q∗
λ) + w − p + (λ − 1)wF

(
wQ∗

λ

p

)
= 0

It is straightforward to show that Q∗ ≥ Q∗
λ1

≥ Q∗
λ2

for
any λ2 ≥ λ1 ≥ 1, implying that the newsvendor would pre-
fer to order less to avoid a potential loss. This is consistent
with the intuition that the order quantity would decline as loss
aversion rises.

Consider now that the newsvendor purchases options from
multiple suppliers. Our model is a special case of Martínez-
de-Albéniz and Simchi-Levi [25] except that we model loss-
aversion in our setting. Basically, there are n options from
n different suppliers, with index i denoting the ith one,
i ∈ {1, . . . , n}. The reservation price and execution price
of the ith option are denoted by (ri , hi). Note that n = 1 is
equivalent to the situation where the newsvendor faces a buy-
back contract with wholesale price r + h and buyback credit
h. Assume without loss of generality that r1 > · · · > rn. We
further make the assumption that r1 + h1 < · · · < rn + hn

(and hence h1 < · · · < hn). Although the previous litera-
ture (e.g., [15] and [16]) assumes only that h1 < · · · < hn,
our assumption could be relaxed easily, since if there are two
options i and j such that ri > rj and ri + hi ≥ rj + hj , one
would always prefer j to i, hence option i could be removed
from the option set. The timeline of events in this problem is
as follows (refer to Fig. 1):

• Stage 1: For every option i, 1 ≤ i ≤ n, the reservation
price and execution cost, (ri , hi), are announced.

• Stage 2: The newsvendor decides the reservation
quantity qi of the ith option, where qi ≥ 0, and pays
the reservation cost qiri .

• Stage 3: Demand uncertainty is resolved. Let x denote
the newsvendor’s revealed demand.

• Stage 4: The newsvendor decides how many options
to execute, where the execution quantity of option i is
yi , 0 ≤ yi ≤ qi , with the restriction y = ∑

i yi ≤ x.
The newsvendor pays the execution cost yihi for the
ith option.

• Stage 5: The newsvendor sells y products at retail
price p, and hence collects yp. The unfilled demand x
– y is completely lost. Alternatively, assuming the spot

Figure 1. Timeline of events.

price is also p, the excess demand is filled completely
through the spot market, which makes no difference
for the newsvendor in terms of profit.

The newsvendor’s profit is then given by

Y = yp −
n∑

i=1

riqi −
n∑

i=1

hiyi

and his utility U = Y when Y > 0, and U = λY otherwise.
The larger λ is, the more sensitive the newsvendor to loss.
The problem is then to maximize the newsvendor’s expected
utility.

For convenience, we make the assumption that ri +hi < p

for every option i (so it follows that r1 + h1 < · · · <

rn + hn < p), otherwise the newsvendor would have no
incentive to procure that option and we could simply remove
it from the option set. After reservation costs are sunk and
demand is revealed, it is optimal for the newsvendor to apply a
greedy approach to pick (among the unexecuted) options with
the smallest execution cost until all options are executed or
demand is completely filled, so his optimal executing strategy
is as follows:

• If
∑

i qi ≤ x, yi = qi for every 1 ≤ i ≤ n.
• If

∑
i qi > x, there exists a 1 ≤ j ≤ n such that yi =

qi when i < j, and yj = x−∑j−1
i=1 qi , yi = 0 when i > j.

Hence, we could represent the newsvendor’s expected
profit as

E(Z) =
n∑

i=1

⎛
⎝−riqi + (p − hi)

∫ qi

0
F̄

⎛
⎝ i−1∑

j=1

qj + x

⎞
⎠ dx

⎞
⎠

where F̄ (·) = 1 − F(·) is the complementary cumula-
tive distribution function of the demand, that is, F̄ (x) =
Pr(Demand ≥ x).

We refer to the abovementioned model as the original
model. When the newsvendor is risk neutral, that is, λ = 1, his
goal is to maximize the expected profit. This is the same as
the procurement problem addressed in Fu et al. [15], which
shows that for any two consecutive active options (an option i

Naval Research Logistics DOI 10.1002/nav
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is active iff qi > 0) a and b (assume without loss of generality
that a < b), there is

a∑
i=1

qi = F−1

(
1 − ra − rb

hb − ha

)

In Fu et al. [15], the spot market is also viewed as an option,
rn+1 = 0 and hn+1 is the spot price. Hence, our problem can
alternatively be described as a procurement problem in which
the stochastic demand is x and the newsvendor could either
buy options or buy from the spot market (hn+1 = p). If
his reservation quantity is less than the demand, the excess
demand is filled through the spot market. If the cost of the
combined use of options and the spot market exceeds the
cost of using the spot market only, the newsvendor loses,
otherwise he gains. The goal is to maximize his expected
utility.

In the remaining part of the article, we will use the pro-
curement model to describe our problem. For consistency, p
is both the newsvendor’s retail price in the newsvendor model
and the spot price in the procurement model. To bridge the two
models discussed above, it is convenient to say that when the
newsvendor has insufficient inventory to serve all demand,
he has to make an emergency purchase from the spot market,
and the price equals the retail price. So the use of the spot mar-
ket brings neither risk nor profit to the newsvendor. Although
the problem could be generalized to the case where the spot
price deviates from the retail price, we restrict our effort to the
current model for (conciseness/ease of description) without
compromising the main insights from the model.

4. SINGLE OPTION

In this section, we consider the problem where there is only
a single option, that is, n = 1. For convenience, consider the
procurement risk management model where we remove the
subscript i and use r, h to denote the reservation and execu-
tion costs of the option, respectively, and p to denote the spot
price (or the retailing price in the newsvendor model).

4.1. Optimal Solution

Suppose that the newsvendor reserves q units of option,
and therefore, his procurement cost when the demand is x is
given by

C(x) = rq + h min(x, q)

and his revenue is p min {x, q}. Our goal is to find a q
that maximizes the buyer’s expected utility. Note that when
x = rq/(p −h), the buyer’s utility is zero. Since r +h < p,

we have rq/(p − h) < q. Let f be the PDF of the demand,
we could then write the expected utility as a function of q,

U(q) = λ

∫ rq

p−h

0
(px − hx − rq)f (x)dx

+
∫ q

rq

p−h

(px − hx − rq)f (x)dx

+
∫ ∞

q

(pq − hq − rq)f (x)dx

Taking the first-order derivative with respect to q gives

∂U

∂q
= (h − p)F(q) − (λ − 1)rF

(
rq

p − h

)
− h − r + p

It is straightforward to see that U is concave with respect
to q, so the optimal order quantity is q* such that

(h − p)F(q∗) − (λ − 1)rF

(
rq∗

p − h

)
− h − r + p = 0

(1)

Note that h < p, λ ≥ 1, the left-hand side of Eq. (1) is con-
tinuous and monotonously decreasing in q. Thus, we have
shown the uniqueness and existence of the optimal solution
q*. Further, q* could be found efficiently by performing a
binary search.

It should be noted that Wang and Webster [34] consider the
loss-averse newsvendor with a single supplier r > 0, h = 0,
and a goodwill cost, s, is incurred when demand is not filled.
We consider the case h ≥ 0 and no emergency delivery or
goodwill cost is incurred.

When loss aversion rises, λ−1 increases and the left-hand
side of Eq. (1) decreases, given that q* remains the same. To
cover the decrease and keep the equation, the optimal level
of q decreases. Thus, as expected, the reservation quantity of
the single option decreases when loss aversion rises.

OBSERVATION 1: The buyer would procure less in the
loss-averse model than in the risk-neutral model.

When λ = 1, the buyer is risk-neutral, and the optimal
solution is q* such that

F(q∗) = p − h − r

p − h

which is consistent with our observation. Conversely, when
F(q) = p−h−r

p−h
, the left-hand side of Eq. (1) larger than zero,

hence the optimal solution is less. This implies that a loss-
averse buyer would reserve less compared with a risk-neutral
buyer with the same demand in the single option model.

Naval Research Logistics DOI 10.1002/nav
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50 Naval Research Logistics, Vol. 62 (2015)

OBSERVATION 2: Obviously, when w = h+ r , the loss-
averse buyer would procure more with supply options than in
the traditional model. As discussed in Section 3, the optimal
ordering quantity for a loss-averse buyer in the traditional
model (i.e., the buyer buys products directly) is

−pF(q∗) − (λ − 1)wF

(
wq∗

p

)
− w + p = 0 (2)

It follows then that when h = 0, Eqs. (1) and (2) yield
the same solution (in fact the two equations solve the same
newsvendor problem). When h increases, the solution to
Eq. (2) remains the same, whereas the solution to Eq. (1)
decreases. Therefore, the observation follows immediately.

Further, when w = h + r , the loss-averse buyer prefers
options to firm orders. As shown above, the buyer would
order q∗

2 units more than q∗
1 , the optimal procurement quan-

tity in the traditional model. Hence, u2(q
∗
2 ) > u2(q

∗
1 ), where

u2 (resp., u1) denotes the utility function in the option (resp.,
traditional) model. It is then easy to see u2(q

∗
1 ) > u1(q

∗
1 ), so

the observation follows.

4.2. Example

To gain a better understanding of the optimal solution with
an option, we consider the following example. Suppose that
the newsvendor’s demand follows the truncated normal dis-
tribution with mean μ = 100 and deviation σ 2 = 1002. The
demand is restricted to the interval [0, 200], and, to facilitate
comparison with firm orders, we consider the options with
reservation price r and execution price h such that r +h = 10
under different levels of loss aversion, λ, and assume that the
retail price is p = 15.

We present the optimal reservation strategies with loss
aversion varying from λ = 1 to λ = 5, and three types of options
(r , h) = (10, 0), (8, 2), and (6, 4). Here h = 0 corresponds to
firm orders. The newsvendor’s optimal reservation quantity
is given in Table 1, from which we observe the following:

Table 1. Reservation quantities with different risk preferences and
options

λ (r , h) = (10, 0) (r , h) = (8, 2) (r , h) = (6, 4)

1 71.0811 80.1247 92.2137
1.5 60.7016 70.0892 83.0159
2 53.0389 62.3794 75.6091
2.5 47.1205 56.2387 69.4753
3 42.4009 51.2160 64.2926
3.5 38.5450 47.0249 59.8454
4 35.3337 43.4713 55.9821
4.5 32.6170 40.4187 52.5916
5 30.2883 37.7671 49.5901

Figure 2. Supplier’s profit with different option types and different
marginal production costs. The profits when the option parameters
(r, h) are equal to (10, 0), (8, 2), and (6, 4) are shown in red, green
and blue, respectively. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

• A loss-averse newsvendor would reserve less when
loss aversion rises, but this effect is less significant
when the option becomes more flexible, that is, with
less reservation cost and higher execution price.

• The loss-averse newsvendor tends to reserve more
when the option becomes more flexible, and the effect
is quite significant even when the newsvendor is
strongly loss-averse: although the reservation quan-
tity does not increase that much when loss aversion is
strong, the relative increase is much more significant.

One might also wonder if the option contract would benefit
a supplier. Suppose that the supplier has constant marginal
production cost c ≥ 0, and if the newsvendor reserves q
units from the supplier and executes y ≤ q units, the unex-
ecuted q − y units are completely perished without salvage.
In Fig. 2, we compute the supplier’s expected profit with dif-
ferent options and different marginal production costs, given
the newsvendor’s loss aversion λ = 2. It could be seen that
(r , h) = (6, 4) benefits the supplier most, and so the introduc-
tion of option contracts could be mutually beneficial to both
the newsvendor and the supplier. We refer readers to Burne-
tas and Ritchken [5] and Brown and Lee [4] for discussions
of the win–win situation that options could bring.

4.3. A Different Approach

Although the single-option case n = 1 could be solved
to optimality quite efficiently, the problem becomes much
harder in the multioption model where n > 1, and it is diffi-
cult to generalize the idea adopted above. Let us now consider

Naval Research Logistics DOI 10.1002/nav

 15206750, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.21613 by H

ong K
ong U

niversity O
f, W

iley O
nline L

ibrary on [25/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Lee, Li, and Yu: The Loss-Averse Newsvendor Problem 51

an alternative approach, which could be easily generalized to
more options.

First, let us analyze the change in expected utility, du, when
q changes to q + dq for some |dq| � 1. dq can be either pos-
itive or negative. We consider the case where dq is positive.
The other case could be analyzed similarly.

• CASE 1: The change in expected utility when the
demand is larger than q. Consider the following two
subcases:

CASE 1.1: When the demand is larger than
q + dq. Since the reservation quantity is q,
the additional dq demand has to be realized
through the spot market in the optimal solu-
tion, but through option in the new solution.
Hence, the change in utility is

�11 = (p − h − r)(1 − F(q + dq))dq

= (p − h − r)(1 − F(q)

− F ′(q + ξdq)dq)dq

= (p − h − r)(1 − F(q))dq + o(dq)

for some ξ ∈ (0, 1).
CASE 1.2: When the demand is between q
and q + dq, we have

�12 ≤ (p − h − r)(F (q + dq) − F(q))dq

= (p − h − r)F ′(q + γ dq)dq2

for some γ ∈ (0, 1). This is because �12

reaches its maximum when all additional dq
options are executed and reaches its mini-
mum when none of the additional dq options
are executed,

�12 ≥ −rF (q + γ dq)dq2

Since dq2 is negligible relative to dq, that
is, dq2 = o(dq), we immediately arrive at
the following result:

�1 = �11 + �12

= (p − h − r)(1 − F(q))dq + o(dq)

• CASE 2: The change in expected utility when the
demand is between rq/(p − h) and q, which is
given by

�2 = −r

(
F(q) − F

(
rq

p − h

))
dq + o(dq)

• CASE 3: The change in expected utility when the
demand is below rq/(p − h),

�3 = −rλF

(
rq

p − h

)
dq + o(dq),

and therefore, du = �1 + �2 + �3. It can further be
shown that, when dq is negative, the result will still
hold. We omit the analysis here. Then,

du = (p − h − r)(1 − F(q))dq

− r

(
F(q) − F

(
rq

p − h

))
dq

− rλF

(
rq

p − h

)
dq + o(dq)

=
(

(p − h − r) + (h − p)F(q)

+ (1 − λ)rF

(
rq

p − h

))
dq + o(dq)

It follows then that

du

dq
= (p − h − r) + (h − p)F(q)

+ (1 − λ)rF

(
rq

p − h

)

By equating du
dq

to zero, we maximize the expected
utility. Not surprisingly, the optimal solution is
exactly what Eq. (1) yields. Hence, our analysis in this
subsection is consistent with the previous approach.

5. n OPTIONS

In this section, we consider the general problem where
there are n options. Again, denote the reservation price of
the ith option by ri and the execution price by hi , and assume
without loss of generality that r1 > · · · > rn, r1 +h1 < · · · <

rn + hn. Let p be the retail price (or the spot price).

5.1. The Existence of an Optimal Solution

In this subsection, we show that an optimal solution exists.
Let Dmax be the maximum demand, and pick an M ≥ Dmax.
We consider the solution where the procurement quantity of
each option takes a value from [0, M]n, that is, qi ∈ [0, M]
for every 1 ≤ i ≤ n. Let u(q) be the expected utility cor-
responding to procurement strategy q = (q1, . . . , qn). One
could immediately see that u is continuous in q, and since
[0, M]n is a compact set, by the Weierstrass theorem, there
exists an optimal solution.

Conversely, when qi > M for some i, because M is too
large and precious capital is wasted on reserving unnec-
essary options, one expects u(q) < u(q′), where q ′ =
(q1, . . . , qi−1, Dmax, qi+1, . . . , qn). q is, of course, not the
optimal reservation strategy. Thus, we have shown the exis-
tence of an optimal solution. From here onward, let q =
(q1, . . . , qn) denote the optimal procurement strategy.
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 15206750, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.21613 by H

ong K
ong U

niversity O
f, W

iley O
nline L

ibrary on [25/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



52 Naval Research Logistics, Vol. 62 (2015)

5.2. Subproblems

For an optimal procurement strategy q, there exists a
db ≥ 0 such that when the demand d = db, the newsven-
dor’s utility is zero. As we have shown in Section 3, after
demand is revealed, the newsvendor executes the options
following a greedy approach, hence we could compute the
newsvendor’s utility easily. The uniqueness of db is also quite
straightforward, and there exists a 0 ≤ k < n such that

Qk < db ≤ Qk+1

and

pdb =
n∑

i=1

riqi +
k∑

i=1

hiqi + (db − Qk)hk+1 (3)

where Qk = ∑k
i=1 qi is the total reservation quantity of the

first k options, qk = Qk − Qk−1.
The subproblem Pk is defined as the original n-option

reservation problem with the additional constraint Qk <

db ≤ Qk+1. Intuitively, in subproblem Pk , if the utility is
zero, one could conclude that options 1 to k are executed,
and options k + 2 to n are not executed, and option k + 1 is
completely or partially executed. It follows immediately that
the optimal solution falls to be one of the subproblems, hence
if we could solve subproblem Pk for every 0 ≤ k < n, the
whole problem could be solved.

5.3. Characterizing Subproblem Pk

In this subsection, we assume that all options are active
in the optimal solution, and this assumption is relaxed later
in Section 6. Consider two consecutive active options i
and i + 1. If a strategy q = (q1, . . . , qn) is optimal for
the subproblem, then we consider the alternative strategy
q′ = (q1, . . . , qi −dq, qi+1 +dq, . . . , qn) for some |dq| � 1.
Note that dq can be either positive or negative. Again, we are
trying to study the change in expected utility given the value
of du. We adopt the methodology used in Subsection 4.1 with
slight modification. Consider the following two cases:

CASE 1: When i ≤ k, du = u(q′)−u(q) consists of
the following parts. Similar to the analysis in Section
4, one could immediately come up with,

• The change in expected utility when the
demand is larger than db is

�1 = (ri + hi − ri+1 − hi+1)(1 − F(db))dq

+ o(dq)

• The change in expected utility when the
demand is between Qi = ∑i

j=1 qj and db is

�2 = λ(ri + hi − ri+1 − hi+1)(F (db)

− F(Qi))dq + o(dq)

• The change in expected utility when the
demand is smaller than Qi is

�3 = λ(ri − ri+1)F (Qi)dq + o(dq)

It follows that du = �1 + �2 + �3, and
supposing that q is the optimal solution, we
have du → 0 when dq → 0. Then we are
able to formulate an equation that is linear in
F(Qi) and F(db),

(ri + hi − ri+1 − hi+1)

+ (λ − 1)(ri + hi − ri+1 − hi+1)F (db)

+ λ(hi+1 − hi)F (Qi) = 0

and for ease of description, we refer to these
k equations as gi(F (Qi), F(db)) = 0, i ≤ k.

Given that i and i + 1 are two consecutive active options,
the loss-averse newsvendor would set his Qi smaller than
a risk-neutral newsvendor would, which is consistent with
one’s intuition that a loss-averse newsvendor would tend to
purchase less. However, as we will show later, the set of active
options might change when loss aversion rises, and the result
will not necessarily hold when i and i + 1 are not active in
the risk-neutral settings.

CASE 2: When i > k, du = u(q′) − u(q) consists of
the following parts:

• The change in utility when the demand is
larger than Qi is

�1 = (ri + hi −ri+1−hi+1)(1−F(Qi))dq

+ o(dq)

• The change in utility when the demand is
between db and Qi is

�2 = (ri − ri+1)(F (Qi) − F(db))dq

+ o(dq)

• The change in utility when the demand is
smaller than db is

�3 = λ(ri − ri+1)F (db)dq + o(dq)

Again, we have du → 0 when dq → 0,
hence
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Lee, Li, and Yu: The Loss-Averse Newsvendor Problem 53

(ri + hi − ri+1 − hi+1)

+ (λ − 1)(ri − ri+1)F (db)

+ (hi+1 − hi)F (Qi) = 0

which is referred to as gi(F (Qi), F(db)) =
0, i > k.

Similarly, given that i and i + 1 are two consecutive active
options, the newsvendor would decrease his Qi when he
changes from being risk-neutral to being loss-averse.

For completeness, let rn+1 = 0 and hn+1 = p, where the
approach described above still applies. Now we have n + 1
equations, gi(F (Qi), F(db)) = 0 for every 1 ≤ i ≤ n, and
the determination of db is as follows:

pdb =
n∑

i=1

riqi +
k∑

i=1

hiqi + (db − Qk)hk+1

We can compute the optimal solution based on these
observations.

5.4. Approximating the Optimal Solution

In the previous subsection, we characterized n + 1 equa-
tions to describe the optimal solution. However, these equa-
tions are very difficult to solve when the demand fol-
lows certain distributions, for example, the truncated normal
distribution and the exponential distribution.

As analyzed above, gi is linear in F(Qi) and F(db). Thus,
for simplicity, we represent gi as

gi = αiF (Qi) + βiF (db) + γi

Now consider the linear interpolation of the cumulative
distribution function of the demand F. Suppose that the cumu-
lative distribution of the demand has t pieces, while the ith
piece is defined over Ii = [ai−1, ai] for any 1 ≤ i ≤ t .
a0 < · · · < an are the folding points of F.

A naive approach to the problem is to enumerate 1 ≤ k1 ≤
· · · ≤ kn ≤ t and 1 ≤ k ≤ t such that Qi ∈ Iki

and
db ∈ Ik , therefore, each of the equations gi = 0 becomes
linear and, together with Eq. (3), we would have n + 1
linear equations over n + 1 variables, Q1, . . . , Qn and db,
so the problem becomes solvable. However, enumerating
1 ≤ k1 ≤ · · · ≤ kn ≤ t takes exponential time and would
thus be inefficient.

Now consider a slightly different approach. Note that for
each equation

αiF (Qi) + βiF (db) + γi = 0

The corresponding db increases or decreases monoto-
nously in Qi . For every 1 ≤ i ≤ n, 1 ≤ j ≤ t , let aij be the

solution of db in equation gi = 0, given that Qi = aj . It follows
that when db ∈ [min(ai,j−1, ai,j ), max(ai,j−1, ai,j )], Qi ∈ Ij .
Let

A = {
aij |1 ≤ i ≤ n, 0 ≤ j ≤ t

} ∪ {
aj |0 ≤ j ≤ t

}
and we sort the elements of A and rename them as e1, . . . , e|A|
such that e1 < · · · < e|A|. It follows that within each interval
[ei , ei+1], for any Qj , there must exist an Iu such that Qj ∈ Iu.
Otherwise, assume that Qj could take any value from Iu and
Iu+1, and we have aju ∈ [ei , ei+1], which contradicts the
assumption that ei , ei+1 are two consecutive elements in A.

Then it suffices to consider db ∈ [ei−1, ei] for each 1 ≤
i ≤ |A|, where the value of F(Qi) is linear in Qi . Thus,
we have n + 1 linear functions, and thus, solvable. Note that
|A| ≤ (t + 1)(n + 1), so the entire problem is solvable in
polynomial time of t and n.

6. SELECTING ACTIVE OPTIONS

In the previous section, we found a way to solve the
newsvendor problem in polynomial time given the set of
active options, that is, the options with nonzero reservation
quantities. However, in reality, we do not know whether or
not an option is active.

A straightforward solution is to enumerate the active
options. Assuming that there are n options available, there
are 2n possible combinations of active options, which is
exponentially large, and thus, impractical.

6.1. When db is Known

In this subsection, we analyze the properties of active
options when db is known. Further, assume that Qk < db ≤
Qk+1. In this way, we know that option k + 1 is active since
qk+1 = Qk+1 − Qk > 0. Let i1 < · · · < it+1, it+1 = k + 1
denote the set of active options before k + 1. Following the
analysis in Section 5, we have

(hij+1 − hij )F (Qij ) + (λ − 1)(rij − rij+1)F (db)

= rij+1 + hij+1 − rij − hij

Therefore, for every j ≤ t , when db is known, we can com-
pute Qij assuming ij , ij+1 are two consecutive active options.
Let Qa(b) be the value of Qa when a < b are two consecutive
active options.

PROPOSITION 1: If k + 1 > 1,

it = argmaxx {Qx(k + 1)}1

1It is possible that argmaxx{Qx(k + 1)} is not a singleton. Then,
it suffices to pick the smallest one from the correspondence set
argmaxx{Qx(k + 1)} as it .
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PROOF: The intuition here is that we should reserve as
many units as possible before k + 1. For a given solution with
argmaxx {Qx(k + 1)} not used, we can always improve it by
reserve at that point as well.

The proof is divided into two parts. In the first part, we will
show that, z = argmaxx {Qx(k + 1)} is an active option in
subproblem Pk , and in the second part, we will show that it
= z. Now let us begin with the first part.

Suppose for contradiction that z is not an active option in
the optimal strategy, we immediately have

Qit (k + 1) < Qz(k + 1)

Denote the optimal solution by q = (q1, . . . , qn) such that
qk+1 > 0 and qz = 0. Then, consider the alternative solu-
tion q′ = (q1, . . . , qz + dq, . . . , qk+1 − dq, . . . , qn) for some
0 < dq � 1.

We could come up with

u(q′) − u(q) ≥ (rk+1 + hk+1 − rz − hz)(1 − F(db))dq

+ λ(rk+1 + hk+1 − rz − hz)(F (db)

− F(Qk))dq

+ λ(rk+1 − rz)F (Qk)dq + o(dq)

Let us explain the inequality above. When demand
D > Qk , we satisfy the next dq units of demand using option
k + 1 in the optimal solution q, while we use option z in q′.
Conversely, we have

(rk+1 + hk+1 − rz − hz)(1 − F(db))

+ λ(rk+1 + hk+1 − rz − hz)(F (db) − F(Qz(k + 1)))

+ λ(rk+1 − rz)F (Qz(k + 1)) = 0

and since Qit (k + 1) < Qz(k + 1), we have

u(q′) − u(q) ≥ λ(hk+1 − hz)(F (Qz(k + 1))

− F(Qk))dq + o(dq) > 0

Hence u(q′) > u(q), contradicting the optimality of q,
which gives qz > 0. This completes the first part of our
proof.

As for the second part, suppose for contradiction that z is
an active option, but not the last active option before k + 1,
that is, it > z. Based on the approach in the first part, we
know that Qz ≥ Qz(k + 1), and, as it is the last active option
before k + 1, we have Qit = Qit (k+1). This gives Qit < Qz,
that is, qz+1 +· · ·+qit < 0, contradicting the feasibility, thus
completes our proof. �

Similar to the proof of Proposition 1, we have the following
proposition:

PROPOSITION 2: For any 1 ≤ j ≤ t , if ij+1 > 1,

ij = argmaxx<ij+1

{
Qx(ij+1)

}
Based on Propositions 1 and 2, we could determine all

active options, i1, . . . , it , before k + 1 in polynomial time.

Now let us consider all active options following k + 1,
denoted by k + 1 = u0 < u1 < · · · < us+1 = n + 1. Similar
to Proposition 1, we have the following Proposition,

PROPOSITION 3:

u1 = argminx {Qk+1(x)}

PROOF: Again, the proof is divided into two parts. In the
first part, we will show that, z = argminx {Qk+1(x)} is an
active option in subproblem Pk , and in the second part, we
will that u1 = z. Now let us begin with the first part.

Suppose for contradiction that z is not an active option in
the optimal strategy, we immediately have

Qk+1(u1) > Qk+1(z)

Denote the optimal solution by q = (q1, . . . , qn) such that
qk+1 > 0 and qz = 0. Then, consider the alternative solu-
tion q′ = (q1, . . . , qk+1 − dq, . . . , qz + dq, . . . , qn) for some
0 < dq � 1.

We could immediately come up with

u(q′) − u(q) ≥ (rk+1 + hk+1 − rz − hz)(1 − F(Qk+1))dq

+ (rk+1 − rz)(F (Qk+1) − F(db))dq

+ λ(rk+1 − rz)F (db)dq + o(dq)

The intuition is, when the demand D > Qk+1 − dq, the
next dq units of demand is filled using option k + 1 in opti-
mal solution q, and filled using option z in q′. Conversely, we
have

(rk+1 + hk+1 − rz − hz)(1 − F(Qk+1(z)))

+ (rk+1 − rz)(F (Qk+1(z)) − F(db))

+ λ(rk+1 − rz)F (db) = 0

and since Qk+1 = Qk+1(u1) > Qk+1(z), we have

u(q′) − u(q) ≥ (hz − hk+1)(F (Qk+1)

− F(Qk+1(z)))dq + o(dq) > 0

Hence u(q′) > u(q), and so qz > 0.
The second part of the proof is similar to the proof of

Proposition 1, and thus we omit it here. �

Naval Research Logistics DOI 10.1002/nav

 15206750, 2015, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.21613 by H

ong K
ong U

niversity O
f, W

iley O
nline L

ibrary on [25/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Lee, Li, and Yu: The Loss-Averse Newsvendor Problem 55

PROPOSITION 4: For any 1 ≤ j ≤ s, if ij−1 < n + 1,

uj = argminx>ij−1

{
Quj−1(x)

}
In this way, when db is known, we could “catch” all active

options for each subproblem Pk , and hence the problem is
solvable.

6.2. db is Unknown

In this subsection, we focus on solving subproblem Pk

when db is unknown. Following the analysis in the previ-
ous subsection, we need to compare Qi(j) and pick up the
maximizer or minimizer for a given i or j. In the previous
subsection, this was done by computing Qi(j) for every
1 ≤ i < j ≤ k + 1 and k + 1 ≤ i < j ≤ n + 1, but
this is impossible when db is unknown.

PROPOSITION 5: For every 1 ≤ i1 < i2 < j ≤ k + 1,
there exists a d(i1, i2, j) such that either

• db > d(i1, i2, j) implies Qi1(j) > Qi2(j), and
db < d(i1, i2, j) implies Qi1(j) < Qi2(j) or

• db > d(i1, i2, j) implies Qi1(j) < Qi2(j), and
db < d(i1, i2, j) implies Qi1(j) > Qi2(j)

PROOF: First, when i and j are two consecutive active
options, we have

(ri + hi − rj − hj ) + (λ − 1)(ri + hi − rj − hj )F (db)

+ λ(hi+1 − hi)F (Qi) = 0 (4)

Therefore, there exist αi1,j , αi2,j , βi1,j , βi2,j , γi1,j , andγi2,j

such that

αi1,jF (Qi1(j)) + βi1,jF (db) + γi1,j = 0,

αi2,jF (Qi2(j)) + βi2,jF (db) + γi2,j = 0

Now let F(Qi1(j)) = F(Qi2(j)). The above two equa-
tions, if not linearly dependent, could give a unique F(db),
and denote the corresponding db by d(i1, i2, j). Otherwise,
d(i1, i2, j) = 0. �

By Proposition 5, when d(i1, i2, j) is known, one could
compare Qi1(j) and Qi2(j) easily. Similarly, we have the
following proposition,

PROPOSITION 6: For every k+1 ≤ i < j1 < j2 ≤ n+1,
there exists a d(i, j1, j2) such that either

• db > d(i, j1, j2) implies Qi(j1) > Qi(j2), and
db < d(i, j1, j2) implies Qi(j1) < Qi(j2), or

• db > d(i, j1, j2) implies Qi(j1) < Qi(j2), and
db < d(i, j1, j2) implies Qi(j1) > Qi(j2)

Now, let us call the corresponding d(i, j , k) cutoff points.
There are O(n3) cutoff points, and so there are O(n3) inter-
vals, such that when db is within some interval, it is possible
to compare Qi(j) when i or j is fixed, and so the operations
performed in the previous section apply here. Thus, the global
problem is solvable in polynomial time.

7. GENERAL DISTRIBUTIONS

In Section 5, we solved the problem in polynomial time
by taking the linear interpolation of the cumulative demand
function. This works well sometimes, but for many distribu-
tions, like the truncated normal distribution or the exponential
distribution, it is not always easy to interpolate the cumulative
demand distribution, or the interpolated function may have
too many pieces, which makes the computation inefficient.

7.1. Solution Procedure

As we have shown in Section 6, for any subproblem Pk

can be further divided into a polynomial number of subprob-
lems, with the set of active options fixed (the effort we made
in Section 6 also applies to the general distributions). Hence
it suffices to solve the problem with the active options known.
For ease of illustration, we consider only the subcase of Pk

where all options are active, while db is restricted to some
interval [d , d̄].

Following the analysis in Section 5, if we know that db = y
for some y ∈ [d, d̄], we could compute Qi for any 1 ≤ i ≤ n

by the following equations: when i ≤ k,

(ri + hi − ri+1 − hi+1) + (λ − 1)(ri + hi − ri+1 − hi+1)

× F(db) + λ(hi+1 − hi)F (Qi) = 0 (5)

and for i > k, we have

(ri + hi − ri+1 − hi+1) + (λ − 1)(ri − ri+1)F (db)

+ (hi+1 − hi)F (Qi) = 0 (6)

Then, after replacing F(db) with F(y), we could compute
Qi for any i by performing a binary search. Therefore, we
could solve the problem since qi = Qi − Qi−1.

The problem is that we do not know the value of db before
all Qi’s are known. One possible way to overcome this is to
guess a y ∈ [d , d̄], and compute Qi’s under the assumption
that db = y. To distinguish it from the real Qi , we denote
the computed value by Qi(y). Then, with Qi(y) known, we
could compute the corresponding db, denoted by db(y), using
the equation

pdb(y) =
n∑

i=1

riqi(y) +
k∑

i=1

hiqi(y) + (db(y) − Qk(y))hk+1

(7)
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where qi(y) = Qi(y) − Qi−1(y). If the computed db

coincides with y, that is, db(y) = y, then our guess is correct.
Unfortunately, it is almost impossible to guess db correctly.

Nevertheless, based on the returned result db(y), we could
adjust our guess.

LEMMA 1: ∀y1, y2 ∈ [d, d̄], if y1 ≤ y2, then db(y1) ≥
db(y2).

PROOF: First, we would show that Qi(y1) ≤ Qi(y2) when
i ≤ k, and Qi(y1) ≥ Qi(y2) when i > k. This is because in
Eq. (4), ri + hi < ri+1 + hi+1, and hi+1 > hi ; as for Eq.
(5), we have ri > ri+1 and hi+1 > hi , which gives that
Qi(y1) ≥ Qi(y2). By Eq. (7), we have

(p − hk+1)db(y) =
k∑

i=1

(ri + hi)qi(y)

+
n∑

i=k+1

riqi(y) − hk+1Qk(y)

=
k−1∑
i=1

(ri + hi − ri+1 − hi+1)Qi(y)

+
n−1∑

i=k+1

(ri+1 − ri)Qi(y)

+ (rk+hk−rk+1−hk+1)Qk(y) + rnQn

It follows that db(y2) ≤ db(y1), which completes our
proof. �

Now it is possible for us to perform a binary search of db.
Beginning with l = d and h = d̄ , we compute y = (l+h)/2,
and the corresponding db(y). If db(y) > y, set l ← (l+h)/2,
otherwise set h ← (l+h)/2, and begin a new round of search.

7.2. Extension to Piecewise Linear Utility Functions

In the above analysis, we assumed that the utility function
has only one kink point, which is zero. To capture gener-
ality, we shall consider the extension of the basic model to
piecewise linear functions with more than one kink point.
Although firms do not necessarily use piecewise linear util-
ity functions to make business decisions, this setup is quite
convenient for risk-neutral firms in a taxing context (where
the firm’s utility is its pretax profit minus the tax). For exam-
ple, in the UK, from April 1, 2013 onward, the corporate tax
rate is 20% for profits of £300,000 or below and 23% for
profits above. This implies a piecewise linear function with
two kink points, one at 0 and another at 300,000. In Greece,
the tax rate is 26% for profits of 50,000 euros or above, and
33% for profits above. A similar tax structure is also used

in South Korea, Germany, and many other countries. Under
the new setup, the key task is to compute the demand values
d1

b , d2
b , . . . that map the profits to the kink points.

The general approach cannot be solved efficiently, unless
there is only a constant number (i.e., O(1)) of kink points.
For ease of exposition and without compromising the main
insights from the model, we consider the case with two kink
points.

First, we define subproblem Px,y such that

Qx < d1
b ≤ Qx+1, Qy < d2

b ≤ Qy+1

qd1
b −

(
n∑

i=1

riqi +
x∑

i=1

hiqi + (d1
b − Qx)hx+1

)
= π1

qd2
b −

(
n∑

i=1

riqi +
y∑

i=1

hiqi + (d2
b − Qy)hy+1

)
= π2

where π1 and π2 are the utilities corresponding to the two
kink points. Note that the number of subproblems in polyno-
mial in O(1), thus it suffices to show that each subproblem
can be solved efficiently.

For a given subproblem, we solve it through the following
procedure:

• Step 1. Make an initial guess of d2
b ∈ [d, d̄].

• Step 2. Conditional on the value of d2
b , compute the

value of d1
b using binary search until convergence. Let

d1
b (d2

b ) be the obtained value of d1
b conditional on d2

b .
• Step 3. Conditional on the value db

1 (d2
b ), compute the

value of d2
b using binary search and let d2

b (d1
b (d2

b ))

denote that value.
• Step 4. If the initial guess is correct, we have

d2
b (d1

b (d2
b )) = d2

b , and the algorithm completes. If
this does not hold, we update the initial guess and
return to Step 2. The value updating process is again
a binary search.

A more detailed analysis follows. Suppose that when profit
π ≤ π1, the utility is λ1π +c1; when π1 < π ≤ π2, the utility
is λ2π + c2; and when π2 < π , the utility is λ3π + c3, where
λ3 is normalized to 1 without loss of generality.

Similar to the approach described in Subsection 7.1,
we consider the case where all options are active. Then,
analogous to Eqs. (4) and (5), we have:

• When i ≤ x,

(ri + hi − ri+1 − hi+1) + (λ1 − 1)(ri + hi − ri+1

− hi+1)F (d1
b )

+ (λ2 − 1)(ri + hi − ri+1 − hi+1)(F (d2
b )

− F(d1
b )) + λ1(hi+1 − hi)F (Qi) = 0

Naval Research Logistics DOI 10.1002/nav
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• When x < i ≤ y, we have

(ri + hi − ri+1 − hi+1) + (λ1 − 1)(ri + hi − ri+1

− hi+1)F (d1
b )

+ (λ2 − 1)(ri + hi − ri+1 − hi+1)(F (d2
b )

− F(d1
b )) + λ2(hi+1 − hi)F (Qi) = 0

• When i > y, we have

(ri + hi − ri+1 − hi+1) + (λ1 − 1)(ri + hi − ri+1

− hi+1)F (d1
b )

+ (λ2 − 1)(ri + hi − ri+1 − hi+1)(F (d2
b )

− F(d1
b )) + (hi+1 − hi)F (Qi) = 0

Therefore, when d1
b and d2

b are known, we can compute
the reservation quantity qi = Qi − Qi−1 of option i directly.
Now suppose that we already know the value of d2

b , and we
make an initial guess of d1

b = z. We could then compute,
conditional on the guess z, the related values qi(z) for each
option i. Then, using the following equation we can compute
d1

b (z):

pd1
b (z) − π1 =

n∑
i=1

riqi(z) +
x∑

i=1

hi + (d1
b − Qx(z))hx+1

(8)

If d1
b (z) = d1

b = z. Then our guess of d1
b is correct and the

problem is solved. Otherwise, we can adjust our prior guess
according to the relationship between d1

b (z) and d1
b . By per-

forming a binary search, we will eventually reach the correct
value of d1

b . This shows how Steps 2 and 3 are executed in
our algorithm.

We do not know the value of d2
b either. But similarly, we

make an initial guess of d2
b = z, and conditional on the prior

belief and using the approach above, we can obtain the value
of d1

b conditional on d2 = z, denoted by d1
b (d2

b = z). Now,
we can compute the quantity of each option. Then, using

pd2
b − π1 =

n∑
i=1

riqi +
x∑

i=1

hi + (d2
b − Qy(z))hy+1 (9)

We obtain d2
b (d2

b = z): the returned value of d2
b conditional

on the prior belief d2
b = z. If d2

b (d2
b = z) = z, our prior belief

is correct and we are done. Otherwise, we correct our prior
belief and perform a binary search until d2

b (d2
b = z) = z is

satisfied. This completes our algorithm.
Note that not the options are not all necessarily active. As

Section 6 has already shown us how to pick up the active
options, this problem can be solved. Hence our algorithm
can be implemented.

It is easy to see that the whole process terminates in polyno-
mial time. When the number of kink points increases, we can
simply extend the algorithm by adding outside loops of binary
search. The algorithm remains efficient when the number of
kink points is O(1).

Consider now a simple case with only one supply option.
Suppose that the reservation quantity is Q, then the seller’s
profit is

π = (p − h)x − rQ

when demand x ≤ Q and π = (p − h)Q − rQ otherwise.
Then, the seller’s expected utility can be written as

∫ π1+rQ

p−h

0
(λ1((p − h)x − rQ) + c1)f (x)dx

+
∫ π2+rQ

p−h

π1+rQ

p−h

(λ2((p − h)x − rQ) + c2)f (x)dx

+
∫ Q

π2+rQ

p−h

(λ3((p − h)x − rQ) + c3)f (x)dx

+
∫ +∞

Q

(λ3(p − h − r)Q + c3)f (x)dx

The FOC yields Q∗, the optimal value of Q:

λ3(p − h)F (Q∗) + r(λ2 − λ3)F

(
π2 + rQ

p − h

)

+ r(λ1 − λ2)F

(
π1 + rQ

p − h

)
= λ3(p − h − r)

When the utility function is concave, λ1 ≥ λ2 ≥ λ3 and
the left-hand side of the equation is increasing in Q∗. To
keep the results meaningful, normalize the parameters so that
λ1 + λ2 + λ3 = 1. Then, an increase in λ1 is accompanied
by a decrease in λ2 and λ3, which lowers Q∗. Similarly, an
increase in λ3 pushes Q∗ higher.

7.3. Example

Consider an example where, similar to the example given
in Section 4, the newsvendor’s demand follows the truncated
normal distribution N(100, 2002) defined over [0,200]. There
are five options, given in Table 2. The newsvendor’s selling
price is 20.

Table 2. Reservation and execution prices of options

1 2 3 4 5

Reservation price ri 10 8 6 4 2
Execution cost hi 4.5 6.8 9.5 12.6 16.1

Naval Research Logistics DOI 10.1002/nav
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Table 3. Reservation strategies with different risk preferences

λ = 1.0 λ = 1.2 λ = 1.5 λ = 2 λ = 3

q1 31.8260 27.4146 22.9174 17.6489 13.0255
q2 25.7372 22.5184 19.2116 15.2129 10.0791
q3 17.3349 23.3601 28.1628 37.0639 36.5450
q4 12.8480 13.0691 13.4849 13.5367 15.0699
q5 10.0592 10.2133 10.5001 10.5356 11.5650

We compute the optimal strategies corresponding to differ-
ent λ’s and present the results in Table 3. From the table, we
could see that the newsvendor’s optimal response to different
risk preferences varies quite significantly.

Figure 3 displays the values of qi (i = 1, . . . , 5) when λ

increases from 1 to 5. It can be seen that when loss aversion
rises, the newsvendor tends to purchase fewer options with
higher reservation prices but lower execution costs (the“firm”
options), and more options with medium reservation prices
and execution costs. The newsvendor’s purchase quantities of
options with lower reservation prices and higher execution
costs (the “flexible” options) are generally stable. Interest-
ingly enough, the newsvendor’s optimal response changes
abruptly when loss aversion changes from λ = 1.5 to 1.6.
When λ = 1.5, the optimal solution falls in subproblem P1,
and P2 when λ = 1.6. Recall that Pi corresponds to the case
of Qk < db ≤ Qk+1.

8. CONCLUSION

In this article, we consider a loss-averse newsvendor who is
allowed to purchase options from wholesalers before demand

is known and must decide how many of those options to exe-
cute after demand is observed. We characterize the newsven-
dor’s optimal ordering strategy to maximize his expected
utility and propose an efficient algorithm to compute the opti-
mal strategy. As expected, the newsvendor would purchase
more than another loss-averse newsvendor who has no sup-
ply options and less than a risk-neutral newsvendor who has
supply options.

There are many questions to be explored in the future.
Since every newsvendor has some sort of capacity con-
straints, and the cost of dealing with each option supplier
can be viewed as a fixed cost, it would be interesting to
reformulate the problem using capacitated option contracts
with fixed ordering costs. The decision version of this prob-
lem is NP -hard [3], thus one might hope to find efficient
heuristics for the problem. Another problem worth consid-
ering concerns general risk-averse utility functions. Loss
aversion is a special case of risk aversion. The general
case would be more intriguing, yet much more difficult to
tackle.
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Figure 3. The reservation quantities with different levels of loss aversion. q1, q2, q4, q5 decrease and q3 increases with loss aversion. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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