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This article considers a single-period, multiple-supplier procurement problem with capacity constraints and fixed ordering costs. The
buyer can procure from suppliers by signing option contracts with them to meet future uncertain demand. It can purchase from the
spot market for prompt delivery at an uncertain price. The objective is to find the optimal portfolio of option contracts with minimal
total expected procurement cost. Three cases are discussed. For the case with constant capacity constraints and fixed ordering cost,
a dynamic programming approach is used to build a cost function that is strong CK-convex and characterize the structure of the
optimal procurement policy, which is similar to the (s, S) policy. However, there is no efficient algorithm for the calculation of the
critical parameters or the optimal solution. For the remaining two more restricted cases, one with only capacity constraints (yet
zero ordering cost) and the other one with positive ordering cost (yet without capacity constraint), two polynomial algorithms are
provided that are able to solve each of them, respectively.
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1. Introduction

Procurement has become an important function for many
companies. For example, a computer manufacturer may or-
der key components such as memory chips and hard drives
from suppliers. As the cost of the final products is directly
affected by the purchasing price of the components, it is
critical for the manufacturer to find an effective procure-
ment strategy. Many standard commodity products (elec-
tricity, steel, agricultural products, etc.) are available from
multiple suppliers as well as the spot market. The spot mar-
ket, with infinite capacity, provides the buyer with “on the
day” purchasing and delivery. However, the spot price is of-
ten volatile. Over-reliance on the spot market might incur
overwhelming price risk.

One traditional procurement strategy is to sign long-
term contracts, also called a fixed commitment contract,
with suppliers. This type of contract ensures the buyer a
fixed supply quantity in the future at a unit price agreed on
by both the supplier and the buyer; however, it may mean
a huge inventory risk for the buyer. Besides the fixed com-
mitment contract, another way to reduce inventory and
price risks is to use flexible contracts, of which option con-
tracts are a typical example. In option contracts, the buyer
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is allowed to buy a certain amount of commodities from
suppliers at a pre-negotiated price when demand is realized.

The “flexibility” of option contracts lies somewhere be-
tween that of a fixed price contract and that of purchasing
from the spot market. Making proper use of flexible con-
tracts helps the buyer achieve a better trade-off between
inventory risk and price risk, so that the expected procure-
ment cost can be reduced. To better manage the supply, the
buyer should sign option contracts simultaneously with
several suppliers and uses the spot market as a backup sup-
ply source. This purchasing practice has been adopted in
industry. For example, Hewlett-Packard has developed a
Procurement Risk Management (PRM) program to build
contract portfolios with its suppliers (Nagali et al., 2008).
The company has also applied PRM in the procurement of
electricity and memory chips (Billington, 2002).

Martı́nez-de-Albéniz and Simchi-Levi (2005) examine a
multi-period portfolio approach. Taking into account the
presence of a spot market, they design effective portfo-
lio contracts and find the optimal replenishment policy
that maximizes the buyer’s expected profit. They analyze
the condition of the optimal procurement decisions but
do not provide mechanisms to solve those decisions. Fu
et al. (2010) propose a mechanism to obtain the optimal
procurement solution with the use of an option portfo-
lio under the assumption that the demand and spot price
are random and possibly correlated. The models in these
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works are constructed based on the assumption that none
of the option contracts is capacitated and the fixed ordering
cost is zero. However, all suppliers are capacity constrained
in one way or another. Also, the buyer pays a fixed or-
dering cost, which includes costs involved in building and
maintaining relationships with suppliers, preparing legal
documents, conducting preparatory work, etc., for every
option contract it signs with suppliers. Thus, it is impor-
tant to consider capacity constraints and fixed ordering
costs when trying to find the optimal procurement strat-
egy. In practice, it can happen that some companies may
have a lower selling price but quite a limited capacity. Fur-
thermore, including the fixed cost may impact the decision
of how many contracts are to be signed. These two factors
will thus interactively impact the final purchasing decisions.
Furthermore, as we will demonstrate later in the article, if
we use the algorithm proposed by Fu et al. (2010) to solve
the problem with fixed cost and capacity constraints, the
error can be large.

The main purpose of this article is to find an option
contract portfolio that is optimal for the buyer (or man-
ufacturer) such that the expected total procurement cost
is minimized. We also show how capacity constraints and
fixed ordering costs affect the buyer’s decision.

The rest of the article is organized as follows. Section
2 provides a brief literature review. Section 3 sets up the
basic model of the PRM problem. Section 4 discusses the
general case while Sections 5 and 6 provide efficient algo-
rithms to solve the special case with zero ordering cost and
the special case in which each supplier has unlimited capac-
ity, respectively. Section 7 concludes with a summary and
discussion.

2. Literature review

Several streams of literature are related to our work. One
stream focuses on supply chain coordination through the
use of contracts. Readers may refer to Lariviere (1999) or
Cachon (2003) for a review. Some scholars specifically study
the use of option contracts. Barnes-Schuster et al. (2002)
illustrate that an option contract provides flexibility for the
buyer and develop conditions on the cost parameters such
that channel coordination can be achieved. Cheng et al.
(2008) develop an option model to quantify and price a
flexible supply contract.

Serel et al. (2001) investigate the rational actions of the
buyer and the supplier(s) in the presence of a spot market
for two types of periodic review inventory control policies:
the two-number policy and the base stock policy. Wu et al.
(2002) model a negotiable option contract arrangement be-
tween one seller and multiple buyers and derive the seller’s
optimal biding and buyer’s optimal contracting strategies
in a Stackelberg game with the seller taking the lead. We
use a two-part contract price structure similar to the one

used in that paper. Kleindorfer and Wu (2003) provide a
review of the theory and practice of option contacts in a
B2B market. Spinler et al. (2003) consider a similar prob-
lem and generalize it to the state-dependent case, showing
that the model developed by Wu et al. (2002) can be ex-
tended to the case with stochastic costs and demand. Wu
and Kleindorfer (2005) extend the model to multiple sellers
and integrate contract procurement markets with spot mar-
kets and assume that the demand is dependent on price but
is not exogenously generated. Inderfurth and Kelle (2010)
compare a combined purchasing policy with single sourc-
ing options and show that using combined sourcing can be
advantageous in many cases.

For the case where both demand and spot price are ran-
dom and exogenous, Golovachkina and Bradley (2003)
consider a model consisting of one buyer and one sup-
plier and study whether option contracts and a spot mar-
ket can coordinate the supply chain. Martı́nez-de-Albéniz
and Simchi-Levi (2005) examine a multi-period portfolio
approach. In the companion paper, Martı́nez-de-Albéniz
and Simchi-Levi (2009) consider the competition behav-
ior among suppliers under the single-period framework.
Martı́nez-de-Albéniz and Simchi-Levi (2006) study the
trade-off faced by a manufacturer taking into account not
only expected profit but also the associated risk and ap-
ply a mean-variance analysis to the procurement contracts.
Martı́nez-de-Albéniz (2009) presents two models where the
supplier portfolios are optimized to manage demand risk.
Haksöz and Seshadri (2007) give a review of the use of the
spot market to manage procurement in a supply chain. Fu
et al. (2010) propose a mechanism to obtain the optimal op-
tion procurement solution. They also investigate the benefit
of using a portfolio of option contracts instead of sticking
to one fixed price contract and find that two carefully se-
lected option suppliers are enough for the buyer to achieve
a near-optimal performance in procurement. For the multi-
period procurement problem, Fu et al. (2012) extend the
model of Martı́nez-de-Albéniz and Simchi-Levi (2005) and
allow the dynamic adjustment of contract quantity in each
period and obtain the optimality property of replenishment
policy. Our article is an extension of Fu et al. (2010), which
imposes setup cost and capacity constraints.

Another stream of research related to our work focuses
on stochastic inventory management with capacity con-
straints and fixed ordering costs. For the multi-period in-
ventory management problem with fixed ordering costs,
a two-parameter (s, S) policy is optimal. The (s, S)-like
policy, however, fails to work in the case with capacity con-
straints (see Chen and Simchi-Levi (2004) and Wijingaard
(1972)). Federgruen and Heching (1999) address the multi-
period inventory problem with the objective of maximizing
the total profit over a finite or infinite horizon and show
that the base stock list price policy is optimal. They also
point out that the optimal policy has the same structure
as the case with capacity constraints. Chen and Simchi-
Levi (2004) consider a finite horizon and periodic review
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model with fixed ordering cost. Gallego and Scheller-Wolf
(2000) consider a periodic review inventory problem with
fixed ordering cost and capacity constraints. They develop
a new concept, known as the strong CK-convex function,
and give a rather explicit structure of the optimal ordering
policy. We show that their methodology can be applied to
our scenario.

While we study the procurement problem from the per-
spective of the buyer, one may wonder whether the portfolio
approach also benefits suppliers. Brown and Lee (1998) and
Burnetas and Ritchen (2005) discuss the question briefly
and show that the portfolio of an option and a fixed price
contract benefits both the buyer and supplier, thus creating
a “win–win” situation. Buy-back contracts, similar to op-
tion contracts, are beneficial to both buyers and suppliers,
as shown in Pasternack (1985).

3. PRM problem: the basic model

Consider a buyer facing uncertain demand for a single
product. There are n suppliers in the market. Supplier i
offers an option contract with unit reservation price ci and
unit execution price hi . Each supplier has limited capacity.
Let Qi ∈ (0, ∞) denote the capacity of supplier i. Further-
more, a fixed cost is incurred if a supplier is selected and
we let Ki ∈ [0, ∞) denote the fixed ordering cost for option
contract i . The buyer can choose to procure from these
suppliers by signing certain option contracts or tap into
the spot market and purchase the products at a random
spot price Ps. The demand and spot price are independent
and their cumulative distribution functions are available
and denoted by F(D) and G(Ps), respectively.

The decision process of option procurement consists of
two stages. In the first stage, facing uncertain demand and
spot price, the buyer decides to purchase options from n
option suppliers by reserving quantity qi with unit price ci
from supplier i . In the second stage, once the demand and
spot price are realized, the buyer determines the execution
quantity that cannot exceed the quantity reserved in stage
1, with unit execution price hi from supplier i . The excess
demand is realized using the spot market.

We reindex the suppliers such that h1 < h2 < · · · < hn
and use this index throughout the article. The first supplier
offers an option contract with h1 = 0, which is a fixed price
(firm commitment) contract. Denote the indicator function
by I{A}, which assumes a value of one if event A is true and
a value of zero otherwise. Our problem can be formulated
as follows:

(PRM-CK):

min
qi :qi ≥0,i=1,...n

{
n∑

i=1

ci qi + ED,Ps

×
[

min
q ′

i ,z

(
n∑

i=1

(Ki I {qi > 0} + hi q ′
i ) + Psz

)]}

subject to 0 ≤ q ′
i ≤ Qi , ∀i = 1, . . . , n,∑
i

q ′
i + z = D, ∀i = 1, . . . , n,

qi ≥ 0, ∀i = 1, . . . , n.

Obviously, the problem (PRM-CK) is convex in qi , i =
1, . . . , n.

For the purpose of minimizing the procurement cost, the
buyer needs to make a trade-off between price and flexibil-
ity. It can choose the appropriate portfolio of procurement
contracts from the option suppliers with either low flexi-
bility (high reservation cost, relatively low execution cost)
or high flexibility (low reservation cost, relatively high ex-
ecution cost). The spot market can also be regarded as a
supplier—one that provides an option contract with a fully
flexible zero reservation cost but an uncertain and usually
highly fluctuating price. The procurement problem is to
find the optimal decision in the first stage qi , i = 1, . . . , n.
In this article, an “order” refers only to making a reserva-
tion. After the demand D and spot price Ps are realized in
the second stage, the optimal strategy for the buyer follows
a greedy rule: execute the contracts to satisfy the demand
starting from the lowest to highest execution price hi and
realized spot price Ps. We assume that the spot market has
infinite capacity; thus the option contracts with a higher
execution price than the realized Ps will not be executed.
The following two definitions in Fu et al. (2010) will also
be used in our article.

Definition 1. Contract i is called active in a solution of the
option procurement problem if qi > 0, where qi denotes the
amount of options reserved from contract i in this solution.
For two active contracts i and j with i < j, if qr = 0 for all r
with i < r < j , then contracts i and j are called consecutive
active contracts. Furthermore, active contract i is called the
last active contract, if qr = 0 for all with r > i .

For better illustration, we introduce another cost
parameter.

Definition 2. Let h′
i = E[min(hi , Ps)], for i = 1, . . . , n,

and h′
n+1 = E[Ps], then we call h′

i the expected (effective)
execution price.

For an option contract reserved in stage 1, if its execution
price is higher than the realized spot price Ps, the buyer will
not exercise it. Instead, it will purchase from the spot mar-
ket if needed. We can also interpret the expected execution
price in another way. The execution price is implemented
as a price “cap,” the maximum price that the buyer would
pay for execution. If the realized spot price is lower than
the execution price, the supplier will lower the execution
price to the same level as the spot price to entice the buyer
to execute. Thus, the expected execution price of option
i is E[min(hi , Ps)]. Note that the procurement cost to the
buyer is the same in both settings. In this article, we take
the second settings for ease of interpretation. Whatever the
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Table 1. Model extensions and assumptions

PRM-CK PRMC PRMS

Capacity constraints Constant capacitated Capacitated; supplier-dependent Non-capacitated
Ordering cost Non-zero and constant Zero Non-zero and contract-dependent

realized spot price, we always execute at the expected exe-
cution price.

Recall that we have already reindexed the suppliers such
that h1 < h2 < · · · < hn. Obviously, this order holds even
if hi is replaced by h′

i . We can also add the spot market
as supplier n + 1 to the sequence. That is, h′

1 < h′
2 < · · · <

h′
n < h′

n+1 = E[Ps].
We extend the basic PRM model (Fu et al., 2010) by

incorporating the capacity constraints of suppliers and the
fixed ordering costs of the buyer. Generally, there are three
cases.

1. PRM with both capacitated option contracts and fixed
ordering costs (PRM-CK).

2. PRM with capacitated option contracts but zero fixed
ordering cost (PRMC).

3. PRM with non-zero ordering cost but without capacity
constraints (PRMS).

Table 1 shows the model extensions and assumptions.
For Case 1 (PRM-CK), we will provide the structure of

the optimal ordering strategy, which is similar to the (s, S)
policy. However, there is no efficient algorithm for the cal-
culation of the critical parameters or the optimal solution.
For Case 2 (PRMC) and Case 3 (PRMS), efficient algo-
rithms for finding optimal solutions are provided. More-
over, we will allow the capacities (the fixed ordering costs)
for each option to vary in the second (third) case.

4. Case 1: PRM-CK

4.1. The model and assumptions

In the general option PRM problem, the buyer incurs a
fixed setup cost for each order and there may be a finite up-
per bound on the reservation quantity that option suppliers
are able to offer. The spot market, however, has infinite ca-
pacity. We assume that the fixed ordering cost, denoted as
K , is identical for all option contracts and is incurred at
reservation instead of execution. We also assume that the
capacity constraint is identical for all option suppliers, de-
noted as C (i.e., Qi = C for i = 1, . . . , n). Reservation is
the compulsory part of an option contract, while execution
is optional and involves buying and delivering only. Thus,
a variable execution fee is enough to describe the cost in-
curred for execution. We assume that there is no fixed cost
for purchasing from the spot market.

To obtain the optimal solution of the PRM-CK problem,
we consider the reservation quantity of each option supplier

one by one, from i = 1 to n. We adopt the methodology
used by Gallego and Scheller-Wolf (2000), which gives the
optimal ordering policy for the multi-period capacitated
inventory problem with stationary stochastic demand and
fixed ordering cost. Our single period, multi-supplier pro-
curement problem with capacity constraints and fixed or-
dering cost can be formulated in an appropriate way such
that the cost functions satisfy a similar property—strong
CK-convexity. The optimal ordering policy can be applied
to our model. This policy allows us to determine the opti-
mal procurement quantity of each option supplier.

4.2. Dynamic programming

Define

xi : total reservation quantity of option contracts 1, . . . , i −
1;

yi : total reservation quantity of option contracts 1, . . . , i .
yi = xi+1;

yi − xi ( = qi ): the reservation quantity of option contract
i, a decision variable;

fi (x): the minimum expected procurement cost of option
contracts i, i + 1, . . . , n, with current reserved level x and
facing uncertain demand and spot price.

We seek the form of f1(0), which returns the procurement
policy of the (PRM-CK) problem.

costi (yi ) = (ci + h′
i )yi ,

Li (yi ) = h′
i E(yi − D)+,

fi (xi ) = −costi (xi ) + Li (xi )
+ inf y∈[xi ,xi +C]{K × I{y > xi } + Gi (y)}, (1)

Gi (yi ) = costi (yi ) − Li (yi ) + fi+1(yi ), (2)

for i = 1, . . . n; and

fn+1(xn+1) = E(Ps) × E(D − xn+1)+

Note that:

costi (yi ) − Li (yi ) = (ci + h′
i )yi − h′

i E(yi − D)+,

= ci × yi + h′
i × E[min(D, yi )].

Please note that since Gi (yi ) denotes the expected pro-
curement cost from option contract i if the reservation
quantity equals to yi , and yi is the total reservation quan-
tity of option contracts 1 to i , to calculate the value of
fi (xi ) we have to cancel out the procurement cost of option
contracts 1 to i − 1; i.e., the term [costi (xi ) − Li (xi )] from
Gi (yi ).
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4.3. Strong CK-convexity

Definition 3. (Gallego and Scheller-Wolf, 2000): Given a
non-negative constant K , we refer to the function G : R →
R as a strong CK-convex function if for any y, 0 ≤ a <

∞, 0 < b < ∞, 0 ≤ z ≤ C, we have

K + G(y + z) ≥ G(y) + z
b
{G(y − a) − G(y − a − b)}.

If 0 ≤ z ≤ ∞, then the function is a strongly K-convex.
If both a = 0 and 0 ≤ z ≤ ∞, then it is a well-known K-
convex function defined by Scarf (1960). It is easy to see that
any convex function is also a strongly K-convex function,
and any strongly K-convex function is also a strongly CK-
convex function.

By reformulation of the definition:

K + G(y + z) − G(y)
z

≥ G(y − a) − G(y − a − b)
b

,

it is easy to think of strong CK-convexity by the following
geometrical interpretation (see Fig. 1): The slope of the line
linking (y − a − b, G(y − a − b)) with (y − a, G(y − a)) is
always less than or equal to the slope of the line linking
(y, G(y)) with (y + z, G(y + z) + K) for any 0 ≤ z ≤ C.

Proposition 1. Gallego and Scheller-Wolf (2000). If G1
is strongly CK-convex, and G2 is convex, then G1 + G2 is
strongly CK-convex.

Lemma 1. Li (y) = h′
i E(y − D)+ is convex for every i =

1, . . . , n.

Proof.

Li (y) = h′
i E (y − D)+

= h′
i ×

(∫ y

−∞
yf (D)dD −

∫ y

−∞
Df (D)dD

)
,

Fig. 1. Strongly K-convex function (color figure provided online).

dLi (y)
dy

= h′
i

(∫ y

−∞
f (D)dD + yf (y) − yf (y)

)

= h′
i ×

∫ y

−∞
f (D)dD,

d2Li (y)
dy2

= h′
i × f (y) ≥ 0.

�

Lemma 2. Gallego and Scheller-Wolf (2000). Given non-
negative C and K , and a strong CK-convex function G :
R → R, define:

H(x) def inf
y∈[x,x+C]

{K × I {y > x} + G(y)} .

Then H(x) is also strongly CK-convex.

Please note that H(x) represents the optimal cost function
after the new order is finished, given that the current inven-
tory level is x.

Theorem 1. In Equations (1) and (2), Gi (·) and fi (·) are
strongly CK-convex for all i = 1, . . . , n, where K and C de-
note the fixed setup cost and capacity of each option contract.

Proof. The proof is based on mathematical induction.
First, we consider fn+1(x) and Gn(y). Similar to

Lemma 1, we can show that:

fn+1(x) = E(Ps) × E(D − x)+,

is convex in x. Gn(y) = costn(y) − Ln(y) + fn+1(y) is also
convex in y, because:

d2Gn(y)
dy2

= (E(Ps) − h′
n) × f (y) ≥ 0.

Second, we consider fn(x) and Gn−1(y). We know that if
Gn(y) is convex, it is also CK-convex. From Lemma 2:

inf y∈[x,x+C] {K × I {y > x} + Gn(y)} ,

is strongly CK-convex in x. So

fn(x) = −costn(x) + Ln(x)
+ inf y∈[x,x+C] {K × I {y > x} + Gn(y)} ,

is also strongly CK-convex in x because the first two terms
are both convex.

Then

Gn−1(x) = costn−1(x) − Ln−1(x) + fn(x)
= (cn−1+h′

n−1−cn − h′
n)x+(h′

n −h′
n−1)E(x−D)+

+ inf y∈[x,x+C]{K × I{y > x} + Gn(y)},
is also strongly CK-convex in x again because the first two
terms are both convex.

Then by backward mathematical induction, we can
show that Gi (y) and fi (x) are strongly CK-convex for
i = 1, 2, . . . , n. �
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4.4. The decision process and the optimal policy

Rewrite the equation in dynamic programming as

fi (xi ) = −costi (xi ) + Li (xi )
+ inf y∈[xi ,xi +C] {K × I {y > xi } + Gi (y)} ,

Gi (yi ) = costi (yi ) − Li (yi ) + fi+1(yi ).

Given xi , yi is determined by

yi = argminy∈[xi ,xi +C] {K × I {y > xi } + Gi (y)}. (3)

We start from x1 = 0 and sequentially determine all yi ,
i = 1, . . . , n. Note that xi+1 = yi , and yi − xi denotes the
quantity to be ordered from option supplier i . The chal-
lenge is to find yi from Equation (3) for a given xi .

Define:

G∗
i

def inf y≥0 Gi (y)

Si
def {y ≥ 0|Gi (y) = G∗

i }
G̃i (x) def K + inf{x≤y≤x+Qi } Gi (y)

Ai (x) def G̃i (x) − Gi (x)

si
def inf {x|Ai (x) ≥ 0}

s ′
i

def max{x ≤ Si |Ai (x) ≤ 0}
By the definition of s ′

i we have 0 ≤ s ′
i ≤ Si . Note

that Ai (Si ) = G̃i (Si ) − Gi (Si ) and for any y ≥ 0 we have
Gi (Si ) ≤ Gi (y) so it follows that Ai (Si ) ≥ 0 and we can
come up with 0 ≤ si ≤ Si . Also, by definition A(xi) < 0
on xi < si and A(xi) > 0 on s ′

i < xi ≤ Si , and thus we
have 0 ≤ si ≤ s ′

i ≤ Si . Furthermore, we claim that Si is fi-
nite for i = 1, . . . n. This is due to the fact that the slope of
Gi (y) approaches ci as y → ∞, so limy→∞ Gi (y) = ∞ for
i = 1, . . . n.

In order to illustrate the optimal procurement policy, we
introduce the following results from Gallego and Scheller-
Wolf (2000).

Lemma 3.

1. Gi (x) is non-increasing on (−∞, s ′
i ] and strictly decreas-

ing on (−∞, si ).
2. Ai (x) ≥ 0∀x > s ′

i .

Define:

I+
i

def I{s ′
i − C > si }

I−
i

def I{s ′
i − C < si }

GC
i (x) def K + Gi (x + C)

Ḡi (x) def K + inf{s ′
i ≤y≤x+C} Gi (y), s ′

i − C ≤ x ≤ s ′
i

Theorem 2. Given non-negative C and K , and Gi : R → R is
strongly CK-convex, let

Hi (x) def inf
y∈[x,x+C]

{K × I {y > x} + Gi (y)}
= min

{
Gi (x),Ḡi (x)

}
.

Then

Hi (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GC
i (x), x < min{si , s ′

i − C}

{Ḡi (x)}I−
i + min

{
Gi (x), GC

i (x)
}

I+
i ,

min{s ′
i − C, si } ≤ x

<max{s ′
i − C, si }

min{Gi (x), Ḡi (x)}, max{s ′
i −C, si } ≤ x ≤ s ′

i

Gi (x), s ′
i < x

.

(4)

In the work of Gallego and Scheller-Wolf (2000), H(x)
describes an explicit structure of the optimal ordering pol-
icy for a finite planning horizon problem. The parameter
space is divided into four regions. By examining the inven-
tory level at the start of each period, the buyer optimally
decides to order the full capacity or nothing or bring the
inventory to a specified level. In our model, we transform
the ordering decision made in each “period” into the deci-
sion of how much to reserve from each “supplier” (i.e., the
reservation quantity). The technical analysis is similar to
that in Gallego and Scheller-Wolf (2000). We thus do not
provide detailed analysis/explanation.

Specifically, for option supplier i .

1. If xi < min{si , s ′
i − C}, Hi (x) = K + Gi (x + C) and so

it is optimal to order from option supplier i and use up
its capacity.

2. If min{si , s ′
i − C} ≤ xi ≤ s ′

i , it is optimal to order noth-
ing or to bring the total ordering quantity up to a spec-
ified level, which is decided by the values of Gi (xi ),
GC

i (xi ), and Ḡi (xi ), as indicated by Equation (4).
3. If xi > s ′

i , Hi (x) = Gi (x) and so it is optimal not to order
from option i .

Starting with inventory level x1 = 0, we determine the
quantity to be ordered from option supplier 1 following
the optimal policy discussed above, which fixes y1; given
x2 = y1, we similarly determine the ordering quantity from
option supplier 2. Repeating this procedure for all options
suppliers will give us the optimal procuring quantity.

There is no easy way to calculate si and s ′
i even though

they are critical for the optimal ordering policy. Conducting
a numerical study is one option.

5. Case 2: PRMC problem

5.1. The model and assumptions

This section considers the PRMC problem. It is a special
case of PRM-CK when K = 0 though the capacity in each
option is allowed to vary. We show that an efficient algo-
rithm can be provided to solve the problem optimally.
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Fig. 2. Dominated and dominating option contracts (color figure provided online).

We represent all of the option contracts by their cost
parameters in a two-dimensional plane, as shown in Fig. 2.
Denote the set of option contracts by points (h′

i , ci )′s, i =
1, . . . , n, and the spot market by point (h′

n+1, 0).

Definition 4. An option i is dominated if the following sit-
uations occur:

1. There is an option k such that h′
i < h′

k and ci + h′
i >

ck + h′
k; i.e., point i lies to the left of point k and above

the straight line passing through point k with slope −1.

2. Or there are options j and k such that h′
j < h′

i < h′
k and

h′
i − h′

j

h′
k − h′

j
c j + h′

k − h′
i

h′
k − h′

j
ck < ci ;

i.e., point i lies between points j and k and above the
straight line passing through them.

Option j and k are called dominating options of option i .
As can be seen from Fig. 2, an option contract is domi-

nated if and only if it lies above the lower convex hull of the
option contract set, and the lower convex hull only refers
to the portion with downward slope between zeroand one.

For the case where all option suppliers have unlimited
capacities, Fu et al. (2010) show that the active option
contracts in the optimal solution lie on the lower convex
hull; i.e., they are not dominated. Hence, their algorithm
is efficient and could compute the optimal procurement
solution in polynomial time. However, the algorithm fails
when it is applied to the PRMC, problem as we will show
later in Example 1 (Section 5.4), since qi ≤ Qi does not
always hold in the optimal solution to the PRM problem.

Thus, before considering the PRMC problem, we first
consider an easier problem. Let us call it the PRMC(S,I)
problem. In the PRMC(S,I) problem, there is a subset of
suppliers, S, and a positive integer, I , such that for each

supplier i in S, we already have qi = Qi and we have to
try and select more suppliers from those suppliers not in
S (including spot market) with total amount I and assume
that the capacities of these suppliers are unlimited. Our pur-
pose is to satisfy the demand with minimal total cost. More
specifically, suppose that there are n suppliers 1, 2, . . . , n.
We define (h′

i , ci ) similarly for i = 1, . . . , n + 1. There is no
capacity constraint for those contracts not in S. Given a
positive integer I and a subset S ⊆ {1, 2, . . ., n}, the goal of
the PRMC(S,I) problem is to find a procurement strategy
q = (q1, q2, . . . , qn+1) such that the following hold.

1. For every i ∈ S, we have qi = Qi .
2.
∑n+1

i=1,i /∈S qi = I.
3. Let C(q) denote the expected procurement cost when

the procurement strategy is q. For any other strategy q ′
such that conditions 1 and 2 are satisfied, we have

C(q) ≤ C(q ′)

Here the cost function C : (Z+)n+1 → R is defined as

C(q) =
n+1∑
i=1

qi∑
j=1

(
ci + h′

i Pr

(
D ≥

i−1∑
k=1

qk + j

))

+
∞∑

i=1

h′
n+1 Pr

(
D ≥

n+1∑
j=1

q j + i

)
.

The first part,
∑n+1

i=1

∑qi
j=1 (ci + h′

i Pr(D ≥ ∑i−1
k=1 qk +

j )), corresponds to the cost related to the options
we reserved, and the second part,

∑∞
i=1 h′

n+1 Pr(D ≥∑n+1
j=1 q j + i ), corresponds to the cost of buying addi-

tional items from the spot market when the demand is
larger than the quantity we reserved. Note that the spot
market is also viewed as a supplier whose cn+1 = 0; thus,
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the cost function can be equivalently written as

C(q) =
n∑

i=1

qi∑
j=1

(
ci + h′

i Pr

(
D ≥

i−1∑
k=1

qk + j

))

+
∞∑

i=1

h′
n+1 Pr

(
D ≥

n∑
j=1

q j + i

)
,

which does not depend on the value of qn+1. In this
way, we neglect qn+1 and write C(q1, . . . , qn) when it is
obvious from the context.

Definition 5. Contract i is called saturated in a procurement
solution if qi ≥ Qi .

5.2. The PRMC(S,I) problem and its optimal solution

We propose the following algorithm to solve the
PRMC(S,I) problem. Since the algorithm reserves the
units one by one, we call the algorithm the Walk-and-Stop
algorithm.

The Walk-and-Stop Algorithm

Step 1: Set i = 0 and q = 0. For k = 1, . . . , n + 1, we set
qk = Qk if k ∈ S, and qk = 0 otherwise.

Step 2: Find j ≥ i and j not contained in S that
minimizes:

C(q1, . . . , q j + 1, . . . , qn+1).

Step 3: Set q = q + 1, q j = q j + 1 and i = j . If q < I
go to Step 2; otherwise, stop and output q =
(q1, . . . , qn+1).

Theorem 3. The Walk-and-Stop algorithm outputs an opti-
mal solution to the PRMC(S,I) problem.

Proof. See the Appendix. �

Please note that the PRMC problem is much harder than
the PRMC(S,I) problem due to the capacity constraints.
The following theorem is used to cope with this problem.

Theorem 4. (The Saturating Theorem.) Given a subset S of
{1, . . . , n}, suppose that all contracts in S are saturated in
the optimal solution to the PRMC problem. Run the Walk-
and-Stop algorithm for the PRMC(S,I) problem. If we find
that contract i is the first contract that is not in S and qi ≥ Qi
then contract i should be saturated in the optimal solution to
the PRMC problem.

Proof. See the Appendix. �

The Saturating Theorem makes it possible for us to com-
pute the optimal solution to the PRMC problem: we begin
with S = Ø and run the Walk-and-Stop algorithm to solve

the PRMC(S,I) problem with I being a very large number.
If there is no saturated supplier, we have reached the op-
timal solution. Otherwise, we can run the algorithm again
and gradually insert elements into S. In this way, we can
obtain the set S consisting of all saturated contracts in the
optimal solution of the PRMC problem.

5.3. An optimal algorithm for the PRMC problem

We present an algorithm for the PRMC problem based
on the Saturating Theorem. This algorithm proceeds by
identifying the saturated contracts one by one, and after the
set of saturated contracts is updated a new run is performed
to determine the corresponding reservation strategy.

Algorithm for the PRMC problem

Step 1: Run the Walk-and-Stop algorithm for
PRMC(Ø,I) with S = Ø and I being a
large number. If the algorithm ends up without
any supplier i with qi > Qi stop.
Otherwise, let the first saturated contract be i, let
S = {i}, and go to Step 2.

Step 2: Run the Walk-and-Stop Algorithm for
PRMC(S,I) where I is a large number. If
the algorithm stops with no new saturated
supplier, stop. Otherwise, let the first new satu-
rated supplier contract be i, let S = S ∪{i} and
continue Step 2.

Now let us analyze the algorithm. First, observe that
when the algorithm stops, all contracts in S must be satu-
rated based on the Saturating Theorem. We increase |S| by
one each time we come back to Step 2. It takes at most n
runs of the algorithm for the PRMC(S,I) problem to find
all of the new saturated suppliers. Hence, the complexity
depends on the efficiency in solving each PRMC(S,I) prob-
lem. Currently, the algorithm for the PRMC(S,I) problem
is pseudo-polynomial as it depends on the value of I. In the
next subsection, we will provide a polynomial algorithm to
solve the problem.

Different from previous literature on PRM that use dy-
namic programming as the main approach, we employ a
different approach that moves back and forth. This is less
efficient, but dynamic programming might not be applied
here since the existences of capacity constraints remove the
desired property on which dynamic programming rests.

5.4. Time complexity

In this subsection, we focus on the time complexity of the
algorithm for the PRMC(S,I) problem. First, in Step 2, we
should find among j ≥ i and j ∈ S the j that minimizes:

C(q1, . . . , q j + 1, . . . , qn+1).

This is done by comparing C(q1, . . . , qu + 1, . . . , qn) with
C(q1, . . . , qv + 1, . . . , qn) for any 1 ≤ u < v ≤ n + 1 in the
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following way: Let A = ∑u
k=1 qk and

C(q1, . . . , qu + 1, qu+1, . . . , qn)
− C(q1, . . . , qu, qu+1 + 1, . . . , qn)

= cu − cu+1 + (h′
u − h′

u+1)Pr (D > A)
= Bu

· · · · · · · · ·
C(q1, . . . , qv−1 + 1, qv, . . . , qn)

− C(q1, . . . , qv−1, qv + 1, . . . , qn)
= cv−1−cv + (h′

v−1−h′
v)Pr(D> A+ qu+1 + · · · + qv−1)

= Bv−1.

We need to check if
∑v−1

k=u Bk > 0. This can be done in O(n),
assuming that we can find Pr(D > x) in constant time. In
this way, we can find j by repeating the comparison O(n)
times. After finding j , for every k > j , we can try to find a
unique xk

j such that:

C
(
q1, . . . , q j + xk

j , . . . , qn
)

≤ C
(
q1, . . . , q j + xk

j − 1, . . . , qk + 1, . . . , qn
)
, (5)

and

C
(
q1, . . . , q j + xk

j + 1, . . . , qn
)

> C
(
q1, . . . , q j + xk

j , . . . , qk + 1, . . . , qn
)
. (6)

This is done by performing a binary search of xk
j over

(0, Dmax], which takes O(log Dmax) comparisons, where
each comparison costs O(n) time. Here Dmax is the maxi-
mum possible value of demand. Although Dmax could be-
come ∞ theoretically, the demand is always limited in prac-
tice, and log Dmax is rather small for reasonable values of
maximum demand.

Now we can update the Walk-and-Stop algorithm to the
following:

The modified Walk-and-Stop algorithm

Input S = Ø and I = Dmax

Step 1: Set i = 1, qk = Qk for every k ∈ S, and qk = 0
otherwise for every 1 ≤ k ≤ n.

Step 2: Among j ≥ i and j not in S, find the j that
minimizes:

C(q1, . . . , q j + 1, . . . , qn+1).

For every k > j and k not in S find xk
j , which was

defined earlier in Equations (5) and (6).
Let x = min{xk

j }.
• If j = n + 1, stop and output (q1, . . . , qn).
• If q j + x ≥ Q j − 1, set S = S∪{ j} and go to

Step 1.
• Otherwise, set q j = q j + x, i = j and go to

Step 2.

Table 2. Parameters

Supplier

1 2 3 4 Spot market

ci 10 6.2 2.7 0.9 —
h′

i 6 10 15 24 42
Qi 6 5 2 4

Remark 1. The algorithm for the PRMC problem termi-
nates in time O(n3 log Dmax) if we replace the Walk-and-
Stop algorithm by the modified Walk-and-Stop algorithm
in both steps. Hence, it is a polynomial algorithm. Please
see Garey and Johnson (1979, p. 93) for the reference.

5.5. An Example

In this subsection, we show how the algorithm we provided
above performs with a simple example.

Example 1: Suppose that the demand follows the
normal distribution D ∼ N(10, 4) and E[Ps] = 42.

Consider a four-supplier problem with the parameters
listed in Table 2.

We start to run the Walk-and-Stop algorithm with S =
empty set and find that supplier 1 is the first saturated. We
then fix q1 = Q1 (i.e., S = {1}) and run the Walk-and-Stop
algorithm again and have q3 ≥ Q3. Now we fix q3 = Q3,
set S = {1, 3}, and run the Walk-and-Stop algorithm for a
third time, which yields the results listed in Table 3.

Here for every supplier, we have qi ≤ Qi , so the optimal
reserving strategy for the PRMC problem is q = (6, 3, 2, 2).

Remark 2. For comparison purposes, we also obtain the
optimal reservation strategy for the case without capacity
constraints. The optimal reservation strategy correspond-
ing to this case is listed in Table 4.

Clearly, the algorithm of Fu et al. (2010) cannot give us
the optimal solution for the case with capacity constraint.
Furthermore, there is no one-way forward algorithm for
solving the capacity problem, as supplier 3 is saturated, so
we need to have some strategy to be able to increase q2 from
two to three.

Example 2: In Example 1, we have shown that the ca-
pacity constraint will make the optimal solution different
from that without capacity constraint. In this example, we
demonstrate how the optimal solutions change as we vary

Table 3. Results

Supplier

1 2 3 4 Spot market

qi 6 3 2 2
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Table 4. The optimal reservation strategy

Supplier

1 2 3 4 Spot market

qi 6 2 3 2

capacity. We choose 10 options (and the spot market),
whose reservation costs and execution costs are as listed
in Table 5.

We assume that the demand follows a normal distribu-
tion D ∼ N(1000, 5002). In addition, we assume that the
capacity constraints on different options are identical, ex-
cept the spot market whose capacity is infinite. Then we
compute the optimal solutions q = (q1, . . . , qn) for differ-
ent constraints Q. The results are shown in Table 6.

6. Case 3: (Qi = ∞ for all i) for the PRMS problem

6.1. The model and assumptions

In the option procurement management problem, the buyer
incurs fixed ordering costs for using option contracts but
the option suppliers do not have any capacity constraint.
Here, we provide a polynomial algorithm to solve the
problem.

With the presence of fixed ordering cost, the buyer
needs to determine whether or not to use a certain option
contract. The option contract with high setup cost may not
be included in the optimal portfolio, even if its reservation
and execution cost are low. Hence, as we will show in
Example 3 later in this section, the active option contracts
in the optimal solution may not lie on the lower convex
hull; i.e., some can be dominated. Nevertheless, we show
that those active option contracts in the optimal solution
still form a convex hull. Then we use an algorithm to
search for the optimal solution.

Theorem 5. The optimal solution of PRMS must satisfy:

(cik − cik+1 ) = (
h′

ik+1
− h′

ik

)
P

(
D >

k∑
r=1

q∗
ir

)
, (7)

for each k ∈ {1, . . . , |A| − 1}, and

ci|A| = (
E(Ps) − h′

i|A|

)
P

(
D >

|A|∑
r=1

q∗
ir

)
, (8)

where A = {i1 < i2 < · · · < i|A|} denotes all of the active con-
tracts, indexed in an increasing order of execution cost, and
q∗

ik
denotes the reservation quantity of option contract ik,

k = 1, . . . , |A|.

Proof. See the Appendix. �
Please note that the same optimality condition in Equa-

tions (7) and (8) is also valid for the problem with no fixed
cost (Fu et al., 2010). Furthermore, Theorem 5 implies that
if we define:

αik =
(
cik − cik+1

)
(
h′

ik+1
− h′

ik

) ,
then αik ∈ [0, 1] and {αik} is a non-increasing series. Namely,
those active contracts in the optimal solution form a con-
vex hull itself in the two-dimensional space {ci,h′

i}, though
it may not be a lower envelop convex hull for the two-
dimensional space that includes “all contracts.”

Theorem 6. Let q∗ be a solution that satisfies Conditions
(7) and (8) and denote its active contract set by A =
{i1 < i2 < · · · < i|A|}. For ease of exposition, let N = |A|
and (q∗

1 , q∗
2 , . . . , q∗

N) denote the reservation quantity of ac-
tive option contracts. The total procurement cost generated
by the solution q∗ is

CA(q∗) = K1 +
N−1∑
i=1

(
Ki+1 + h′

i

∫ ∑i
r=1 q∗

r

0
Df (D)dD

− h′
i+1

∫ ∑i
r=1 q∗

r

0
Df (D)dD

)

+ h′
N

∫ ∑N
r=1 q∗

r

0
Df (D)dD

+ E(Ps)
∫ ∞
∑N

r=1 q∗
r

Df (D)dD (9)

Remark 3. There are three groups of terms in Equation (9):

K1: The immediate cost incurred if we decide to use the
first option; that is, the setup cost associate with the first
supplier.

Ki+1 + h′
i

∫ ∑i
r=1 q∗

r
0 Df (D)dD − h′

i+1

∫ ∑i
r=1 q∗

r
0 Df (D)dD:

The additional cost incurred if we decide to add one
more option contract i + 1 to the active contract
portfolio.

Table 5. Reservation and execution costs

Options

1 2 3 4 5 6 7 8 9 10 Spot

Reservation price ci 10 9 8 7.1 6 5.1 4 3.1 2 1.1 0
Execution price h′

i 4.5 5.6 6.8 8.1 9.5 11 12.6 14.3 16.1 18.2 20
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Table 6. The optimal solutions to the procurement risk management problem with different capacity constraints the bold numbers
denote the options that are saturated

Q infinity 300 250 200 150 130 115 100

q1 332 300 250 200 150 130 115 100
q2 184 216 250 200 150 130 115 100
q3 161 161 177 200 150 130 115 100
q4 0 0 0 11 150 130 115 100
q5 136 136 177 200 150 130 115 100
q6 0 0 0 0 8 122 115 100
q7 96 96 96 98 150 130 115 100
q8 0 0 0 0 0 0 60 100
q9 74 74 74 74 75 81 115 100
q10 0 0 0 0 0 0 0 0

h′
N

∫ ∑N
r=1 q∗

r
0 Df (D)dD + E(Ps)

∫∞∑N
r=1 q∗

r
Df (D)dD: The pro-

curement cost associated with the last active option and
the spot market.

Remark 4. We let |A| be zero when we do not use any option
contract. In such a case, the expected procurement cost is
E(Ps) × ∫∞

0 Df (D)dD.

Since the optimal solution may not be the lower convex
hull of the {ci,h′

i} space we cannot apply directly the algo-
rithm in Fu et al. (2010) to solve the problem. Nevertheless,
through Theorems 6 and Remarks 3 and 4, we are able to
provide a polynomial-time algorithm to solve the problem.
Note that in the second term of the cost function, there are
N − 1 groups, each one involves

∑i
r=1 q∗

r for i = 1, . . . , N
− 1. We shall use the Shortest Monotone Path Algorithm
in Section 6.3 to solve the problem. Note also that this type
of algorithm was used in Fu et al. (2010) to solve a similar
problem without setup cost and capacity constraint yet de-
mand and spot price were correlated. Here, we use similar
notations as those used in Fu et al. (2010).

6.2. The optimal solution

First, we generate a directed graph G with n nodes denoting
n option contracts and with directed arcs (i, j ) joining two
nodes i and j , for all 1 ≤ i < j ≤ n. For each arc(i, j ), there
is a corresponding pair of parameters (ki j , di j ), where ki j
is a scalar and di j is the length of the arc. We use ki j to
keep track of the aggregated quantity purchased up until
contract i , if i, j are two consecutive active contracts in a
solution that satisfy Equations (7) and (8). Namely, we set
ki j to be the solution of

(ci − c j ) = P(D > ki, j )(h′
j − h′

i ),

and set it to zero if the equality has no solution. We also
use di j to keep track of a component in the procurement

cost function; that is,

di, j = K j + h′
i

∫ ki, j

0
Df (D)dD − h′

j

∫ ki, j

0
Df (D)dD,

and set it to zero if ki, j is zero.
An origin node O and an end node E are then added to

graph G. Also, we add an arc connecting O to each node in
G and an arc that connects each node in G to E. For each
arc(O, j ), set kO, j = 0, and dO, j = K j ; for each arc( j, E),
set kj,E to be the solution of

c j = P(D > kj,E)(E(Ps) − h′
j ),

and

d j,E = h′
j

∫ kj,E

0
Df (D)dD + E(Ps)

∫ ∞

kj,E

Df (D)dD.

For the case where a solution may contain no option
contract, we add an arc connecting the origin node O to
the end node E, with length dO,E = E (Ps) × E(D).

A path from node O to node E with ki j being
monotonously increasing along the path is called a mono-
tone path. The monotone paths set of graph G and the
solutions set defined by Conditions (7) and (8) have a one-
to-one mapping. The shortest monotone path corresponds
to a procurement solution with the lowest procurement
cost. Thus, the PRMS problem can be solved by finding
the shortest monotone path from the origin O to the des-
tination E in graph G. The nodes lying on the shortest
monotone path are the active contracts in the optimal so-
lution and the corresponding distance equals the optimal
procurement cost.

6.3. The shortest monotone path algorithm

The algorithm first computes (ki j , di j ) for each arc. Once
all (ki j , di j ) have been computed, the remaining steps are
the same as that in Fu et al. (2010). For completeness, we
provide it in the Appendix. Note that ki j is computed us-
ing binary search. Hence, the complexity is T1 × log2 Dmax,
where T1 is the time required to compute F(x) and Dmax is
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Table 7. Reservation and execution costs

Options

1 2 3 4 5 6 7 8 9 10 Spot

Reservation price ci 10 9 8 7.1 6 5.1 4 3.1 2 1.1 0
Execution price h′

i 4.5 5.6 6.8 8.1 9.5 11 12.6 14.3 16.1 18.2 20

the maximum value of the demand. Once ki j is found, di j
can be computed easily by calculating the right-hand side
integration with time T2. Then we search for the shortest
monotone path based on (ki j , di j ) and keep track of path
distance for each node with all of its possible predecessors.
We need to compare all of the ki j along the path to ensure
monotonicity. Given (ki j , di j ), the complexity of finding the
shortest monotone distance to node n is O(n3). Please see
the algorithm in the Appendix.

Given that the distribution function of demand is avail-
able, if we treat T1 and T2 as constants (for example, for
a normal distribution or a uniform distributions, we can
obtain F(x) and dij in constant time for each i and j and
hence the total time needed is O(n2)), the complexity of the
shortest monotone path algorithm is O[n2(log2 Dmax + n)],
where n denotes the number of option suppliers.

Remark 5. The optimal solution to the PRMS would vary
when the fixed costs of the options change. To illustrate
this, we compare the minimum cost obtained using our al-
gorithm and that by using the procurement strategy with-
out considering the fixed ordering cost. In our sample, we
choose 10 options (and the spot market), whose reserving
costs and execution costs are listed in Table 7.

Assume that the demand follows a normal distribution
D ∼ N(1000, 5002). To simplify our analysis, we suppose
that the fixed ordering costs of all options are identical.

Figure 3 shows the comparison of the cost of the optimal
solution and that of using the solution without considering
fixed ordering costs, when the fixed ordering costs changes.
As we can see from the figure, the error can be large when
the fixed setup cost is high.

Remark 6. Fu et al. (2010) show that under the condition
that neither a fixed ordering nor capacity constraint is im-
posed then if we only use two contracts instead of using
the optimal solution, the errors are rather stable and the
average errors on numerical experiments are less than 2%.
On the other hand, they also show that the worst-case error
bound of deleting a contract can be arbitrarily large. We
believe that if the fixed ordering cost is small and capacity
is large, then the results in Fu et al. (2010) can be applied to
our case. On the other hand, if the capacity is small, then
intuitively we know that deleting any contract can incur
huge error.

Example 3: We consider the case with 10 suppliers offering
option contracts and compare two cases (with and without
fixed ordering costs) to see how the fixed costs affect the op-
timal procurement solution. The distributions of demand
and spot price are the same as those in Example 2.

As can be observed from Table 8, some dominated option
contracts are active in the optimal solution when the fixed
costs are non-zero. Moreover, these active contracts can

Fig. 3. Comparison between the optimal solution and the solution without considering fixed ordering cost.
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Table 8. Option procurement with fixed ordering costs

Fixed ordering Optimal reservation Fixed ordering Optimal reservation
Option h (execution cost) c (reservation cost) cost I quantity cost II quantity

1 4.5 10 0 332.4 80 332.4
2 5.6 9 0 183.9 80 314.4
3 6.8 8 0 160.8 50 0
4 8.1 7.1 0 0 0 105.6
5 9.5 6 0 136.1 30 0
6 11 5.1 0 0 10 163.6
7 12.6 4 0 79.6 60 0
8 14.3 3.1 0 0 10 0
9 16.1 2 0 104.1 70 0

10 18.2 1.1 0 0.4 30 0
Spot market 20 0

form a new lower convex hull if the contracts lying below
them are removed. This is consistent with the property
described in Equations (7) and (8).

7. Conclusions and discussion

This article models the PRM-CK problem. Effective supply
option contracts play an important role in reducing cost for
a buyer, especially when demand is uncertain and the spot
market price is highly volatile. When a number of suppliers
in the market provide option contracts specifying different
price terms, finding the optimal procurement strategy is
both an interesting and challenging problem for the buyer.

We have considered three cases and develop frameworks
for the design of an optimal supply contract portfolio in a
single-buyer, single-period environment and show how the
capacity constraints and fixed ordering costs affect the op-
timal procurement solution. Incorporating capacities and
fixed ordering costs is important because (i) (all suppli-
ers have limited capacities and a buyer incurs fixed or-
dering costs from maintaining relationships with suppliers,
preparing legal documents, etc.; and (ii) the introduction of
capacity constraints and fixed ordering costs significantly
affects the optimal ordering policy. We mainly focus on
the solution method and describe the characteristics of the
procurement policy. In this article, we mainly focus on, one
product. For the problem with multiple products, different
products may have different demand patterns. Generally
speaking, the option portfolio approach allows the buyer
to meet the demand of each product with an appropriate
policy. For example, the buyer would sign a lower-cost yet
less flexible contract for a product with a known demand,
and sign a higher-cost yet more flexible contract for the
product with a volatile demand.

This article certainly has room for improvement. First,
for the PRM-CK problem we assume that the ordering cost
is buyer dependent and identical for all option contracts.
More work is needed to find the optimal procurement ap-
proach if this assumption is relaxed. We also assume that
the buyer is risk neutral and focus on minimizing the ex-

pected value of the cost function. One interesting issue is
how to take the risk explicitly into consideration and how
the risk attitude affects the portfolio procurement decision
under the cases discussed.
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Appendix

Proof of Theorem 3. It is straightforward to see that the
solution obtained from the Walk-and-Stop algorithm sat-
isfies requirements 1 and 2 of the PRMC(S,I) problem. It

remains to prove that it satisfies requirement 3 also; i.e.,
the optimality of the solution. For simplicity, we prove the
following claim first.

Claim 1. If C(q1, . . . , qi , . . . , q j + 1, . . . , qn) < C(q1, . . . ,

qi + 1, . . . , q j , . . . , qn) and q ′
k ≥ qk for every i ≤ k < j , we

have:

C(q1, . . . , q ′
i , q ′

i+1, . . . , q ′
j−1, q j + 1, . . . , qn)

< C(q1, . . . , q ′
i + 1, q ′

i+1, . . . , q ′
j−1, q j , . . . , qn).

Proof of Claim 1. Let A = ∑i−1
k=1 qk and denote:

C(q1, . . . , qi + 1, qi+1, . . . , qn)
− C(q1, . . . , qi , qi+1 + 1, . . . , qn)

= ci − ci+1 + (h′
i − h′

i+1)Pr(D > A+ qi )
= Bi

· · · · · · · · ·
C(q1, . . . , q j−1 + 1, q j , . . . , qn)

− C(q1, . . . , q j−1, q j + 1, . . . , qn)
= c j−1 − c j + (h′

j−1 − h′
j )

Pr (D > A+ qi + qi+1 + · · · + q j−1)
= Bj−1.

It follows that:

j−1∑
k=i

Bk = C(q1, . . . , qi + 1, . . . , q j , . . . , qn)

− C(q1, . . . , qi , . . . , q j + 1, . . . , qn) > 0.

Next, we set

C(q1, . . . , q ′
i + 1, q ′

i+1, . . . , q ′
j−1, q j , q j+1, . . . , qn)

− C(q1, . . . , q ′
i , q ′

i+1 + 1, . . . , q ′
j−1, q j , . . . , qn)

= ci − ci+1 + (h′
i − h′

i+1)Pr(D > A+ q ′
i )

= Ci

· · · · · · · · ·
C(q1, . . . , qi , q ′

i+1, . . . , q ′
j−1 + 1, q j , . . . , qn)

− C(q1, . . . , qi , q ′
i+1, . . . , q ′

j−1, q j + 1, . . . , qn)

= c j−1 − c j + (h′
j−1 − h′

j )

Pr(D > A+ q ′
i + q ′

i+1 + · · · + q ′
j−1)

= Cj−1.

For every i ≤ k ≤ j − 1, we have

Ck − Bk = (h′
k+1 − h′

k)Pr(A+ qi + qi+1 + · · · + qk

< D ≤ A+ q ′
i + q ′

i+1 + · · · + q ′
k)

≥ 0.

It follows that:

j−1∑
k=i

Ck ≥
j−1∑
k=i

Bk > 0.
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Since
j−1∑
k=i

Ck = C(q1, . . . , q ′
i + 1, q ′

i+1, . . . , q ′
j−1, q j , . . . , qn)

− C(q1, . . . , q ′
i , q ′

i+1, . . . , q ′
j−1, q j + 1, . . . , qn) > 0,

we are done. �
Now we come back to the proof of Theorem 3. To prove

the optimality of the solution, it suffices to show that any
other solution is not optimal, and since there exists an
optimal solution (the number of solutions is finite), we
can prove the theorem. Formally, suppose that there is a
reservation strategy q∗ = (q∗

1 , q∗
2 , . . . , q∗

n+1) such that for
every i ∈ S, q∗

i = Qi and
∑n+1

i=1,i /∈S q∗
i = I. Suppose that

q∗ = q. We shall prove that q∗ is not an optimal solution
to the PRMC(S,I) problem, where q is the output from
Walk-and-Stop algorithm.

Since q∗ = q, let k be the smallest index such that
q∗

k = qk. It could be seen that k /∈ S. Now we consider
the following two possibilities:

1. q∗
k > qk.

Let j be the smallest number such that j > k, j /∈ S and
q j > 0. Note that such j must exist since

∑n+1
i=1,i /∈S q∗

i =∑n+1
i=1,i /∈S qi .

Claim 2. C(q∗
1 , . . . , q∗

k − 1, . . . , q∗
j + 1, . . . , q∗

n+1) < C(q∗
1 ,

. . . , q∗
n+1).

Proof of Claim 2. Based on the induction hypothesis and
the property of the Walk-and-Stop algorithm, we could see
that:

C(q1, . . . , qk, . . . , q j−1, 1, v j+1, . . . , vn)
< C(q1, . . . , qk + 1, . . . , q j−1, 0, v j+1, . . . , vn),

where vd = Qd when d ∈ S, and zero otherwise.
That is, when (q1, . . . , qk) is already reserved, it would cost
less to reserve the next unit from j than from k. Based on
Claim 1, we have

C(q1, . . . , qk, q∗
k+1, . . . , q∗

j−1, 1, v j+1, . . . , vn)

< C(q1, . . . , qk + 1, q∗
k+1, . . . , q∗

j−1, 0, v j+1, . . . , vn).

This is because qi < q∗
i when k < i < j ; qi = q∗

i when i ∈ S;
and qi = 0 otherwise.
Next, based on Claim 1 again, we obtain:

C(q1, . . . , q∗
k − 1, q∗

k+1, . . . , q∗
j−1, 1, v j+1, . . . , vn)

< C(q1, . . . , q∗
k , q∗

k+1, . . . , q∗
j−1, 0, v j+1, . . . , vn),

and it follows that:

C(q1, . . . , q∗
k − 1, q∗

k+1, . . . , q∗
j−1, 1, 0, . . . , 0)

< C(q1, . . . , q∗
k , q∗

k+1, . . . , q∗
j−1, 0, . . . , 0).

This is because in both strategies (q1, . . . , q∗
k − 1, q∗

k+1,

. . . , q∗
j−1, 1, v j+1, . . . , vn) and (q1, . . . , q∗

k , q∗
k+1, . . . ,

q∗
j−1, 0, v j+1, . . . , vn), the total reservation quantities

of the first j options are the same; therefore, the costs
associated with the last n − j options are the same:
Let M = q1 + · · · + q∗

k + · · · + q∗
j−1 + 1, and the cost

associated with the last n − j options would be

c j+1v j+1 + h j+1

v j+1∑
t=0

Pr(D ≥ M + t) + c j+2v j+2

+ h j+2

v j+2∑
t=0

Pr(D ≥ M + v j+1 + t) + · · · .

Subtracting this part from both sides and adding the new
cost for spot purchase, the result follows. For the same
reason:

C(q1, . . . , q∗
k − 1, . . . , q∗

j + 1, . . . , q∗
n )

< C(q1, . . . , q∗
k , . . . , q∗

j , . . . , q∗
n ).

Note that qi = q∗
i when i < k, and in this way we have

proved Claim 2, which implies that q∗ is not an optimal
solution. (Note that in the PRMC(S,I) problem, there is
no capacity constraint on suppliers not in S.)

1. q∗
k < qk.

The proof is similar to the proof of the case q∗
k > qk. Here,

let j be the smallest number such that j > k, j /∈ S, and
q∗

j > 0. The existence of such j is clear. Following a similar
argument, we could prove that:

C(q∗
1 , . . . , q∗

k + 1, . . . , q∗
j −1, . . . , q∗

n+1)<C(q∗
1 , . . . , q∗

n+1).

In this way, we could show that q∗ is not the optimal solu-
tion. It follows that q is the optimal solution, and our proof
is complete. �

Proof of Theorem 4. Suppose that we run the Walk-and-
Stop algorithm and stop it when we find the first contract,
say k, that is not in S and saturated (i.e., qk ≥ Qk). Denote
the current output by (q1, . . . , qk, vk+1, . . . , vn). Note that
every contract l > k is either not reserved (vl = 0) or is in S
(vl = Ql).

Claim 3. Let q∗ = (q∗
1 , . . . , q∗

n ) be the optimal solution to
the PRMC problem. Then q∗

i ≥ qi for every 1 ≤ i ≤ k.

Proof of Claim 3. Suppose that Claim 3 holds for 1 to
i − 1. We shall prove that it also holds for i . The proof is
trivial when qi = 0 or i ∈ S, so we simply assume that qi > 0
and i ∈ S. Suppose that q∗ = (q∗

1 , . . . , q∗
n ) is the optimal

solution, with q∗
i < qi . We shall prove that q∗ is not optimal,

which contradicts the assumption. We take the following
two cases:

Case 1: There is no j such that j < i , j ∈ S, and q j > 0.
Here we pick up the smallest l such that l = i , l ∈ S, and

q∗
l > 0. We shall prove that q∗ can be improved by reserving

one unit less from q∗
l and one more unit from q∗

i .
Case 1.1: l > i .
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By the optimality of the Walk-and-Stop algorithm and the
assumption that q∗

i < qi , we have

C(v1, . . . , q∗
i + 1, . . . , 0(contractl), . . . , vn)

< C(v1, . . . , q∗
i , . . . , 1(contractl), . . . , vn),

where vi = Qi when i ∈ S and zero otherwise. Note that
vl = 0 because l ∈ S, as we assumed.
Since for any d < l and d = i, there is q∗

d = vd , we have

C(q∗
1 , . . . , q∗

i + 1, . . . , q∗
l−1, 0, . . . , vn)

< C(q∗
1 , . . . , q∗

i , . . . , q∗
l−1, 1, . . . , vn).

Since for both strategies the total reservation quantities
for the first l options are the same, and the reservation
quantities of the last n − l options are same, we replace the
reservation of last n − l options with zero in both sides, the
inequality still holds:

C(q∗
1 , . . . , q∗

i + 1, . . . , q∗
l−1, 0, . . . , 0)

< C(q∗
1 , . . . , q∗

i , . . . , q∗
l−1, 1, . . . , 0),

and

C(q∗
1 , . . . , q∗

i + 1, . . . , q∗
l−1, q∗

l − 1, . . . , 0)
< C(q∗

1 , . . . , q∗
i , . . . , q∗

l−1, q∗
l , . . . , 0),

C(q∗
1 , . . . , q∗

i + 1, . . . , q∗
l−1, q∗

l − 1, . . . , q∗
n )

< C(q∗
1 , . . . , q∗

i , . . . , q∗
l−1, q∗

l , . . . , q∗
n ).

This contradicts the optimality of q∗ or the assumption
that q∗

i < qi ≤ Qi .
Case 1.2: l < i . By the optimality of the Walk-and-Stop
algorithm and the assumption that q∗

i < qi , we have

C(v1, . . . , 0(contractl), . . . , q∗
i + 1, . . . , vn)

< C(v1, . . . , 1(contractl), . . . , q∗
i , . . . , vn).

Following Claim 1 and the induction hypothesis, we could
prove that:

C(q∗
1 , . . . , q∗

l − 1, . . . , q∗
i + 1, . . . , vn)

< C(q∗
1 , . . . , q∗

l , . . . , q∗
i , . . . , vn).

Hence,

C(q∗
1 , . . . , q∗

l − 1, . . . , q∗
i + 1, . . . , q∗

n )
< C(q∗

1 , . . . , q∗
l , . . . , q∗

i , . . . , q∗
n ),

which contradicts the optimality of q∗ or the assumption
that q∗

i < qi ≤ Qi .
Case 2: Let j be the largest number such that j < i , j ∈ S,
and q j > 0.
Based on the optimality of the Walk-and-Stop algorithm,
we have

C(q1, . . . , q j , . . . , qi , vi+1, . . . , vn)
< C(q1, . . . , q j + 1, . . . , qi − 1, vi+1, . . . , vn)

(if q j = Q j , the algorithm would stop at j < i , so q j < Q j ).
It follows that:

C(q1, . . . , q j , . . . , qi , 0, . . . , 0)
< C(q1, . . . , q j + 1, . . . , qi − 1, 0, . . . , 0).

And note that since q1 + · · · + q j + · · · + qi = q1 +
· · · + (q j + 1) + · · · + (qi − 1):

C(q1, . . . , q j , . . . , qi + 1, 0, . . . , 0)
< C(q1, . . . , q j + 1, . . . , qi , 0, . . . , 0)

and

C(q1, . . . , q j , . . . , qi + 1, . . . , qn)
< C(q1, . . . , q j + 1, . . . , qi , . . . , qn).

Case 2.1:
∑ j

d=1 q∗
d >

∑ j
d=1 qd .

Now we shall prove that:

C(q∗
1 , . . . , q∗

j − 1, . . . , qi + 1, . . . , qn) < C(q∗
1 , . . . , q∗

j , . . . ,

qi , . . . , qn).

Let A = ∑ j
d=1 qd , B = ∑ j

d=1 q∗
d − 1:

Aj = (c j − c j+1) + (h′
j − h′

j+1)Pr(D > A),

Bj = (c j − c j+1) + (h′
j − h′

j+1)Pr(D > B).

Since B ≥ A, h′
j < h′

j+1, we have Bj ≥ Aj .
Define Aj+1, . . . , Ai−1 and Bj+1, . . . , Bi−1 similarly.
Next it follows that:

i−1∑
d= j

Ad = C(q1, . . . , q j + 1, . . . , qi , . . . , qn)

−C(q1, . . . , q j , . . . , qi + 1, . . . , qn) > 0,

i−1∑
d= j

Bd ≥
i−1∑
d= j

Ad > 0.

Thus,

C(q∗
1 , . . . , q∗

j − 1, . . . , qi + 1, . . . , qn)

< C(q∗
1 , . . . , q∗

l , . . . , qi , . . . , qn).

Further based on Claim 1, we could prove that:

C(q∗
1 , . . . , q∗

j − 1, . . . , q∗
i + 1, . . . , q∗

n )

< C(q∗
1 , . . . , q∗

j , . . . , q∗
i , . . . , q∗

n ).

This contradicts the optimality of q∗ or the assumption
that q∗

i < qi ≤ Qi .
Case 2.2:

∑ j
d=1 q∗

d ≤ ∑ j
d=1 qd .

Note that based on the induction hypothesis, we have∑ j
d=1 q∗

d ≥ ∑ j
d=1 qd ; thus, we have

j∑
d=1

q∗
d =

j∑
d=1

qd .

Based on the induction hypothesis, q∗
l = ql when l < j .

Remember that j is the largest number such that j < i , j
∈ S, and q j > 0. In this way, we have

i−1∑
d= j+1

q∗
d ≥

i−1∑
d= j+1

qd .
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We claim that:
i−1∑

d= j+1

q∗
d =

i−1∑
d= j+1

qd .

Otherwise, let j < l be the smallest number such that q∗
l >

ql . Based on the assumption (
∑i−1

d= j+1 q∗
d >

∑i−1
d= j+1 qd ), we

have j < l < i . Then, by the optimality of the Walk-and-
Stop algorithm, we have

C(q1, . . . , ql , . . . , q∗
i + 1, vi+1, . . . , vn)

< C(q1, . . . , ql + 1, . . . , q∗
i , vi+1, . . . , vn).

Further, we could prove that:

C(q∗
1 , . . . , q∗

l − 1, . . . , q∗
i + 1, . . . , q∗

n )
< C(q∗

1 , . . . , q∗
l , . . . , q∗

i , . . . , q∗
n ),

which gives a contradiction. In this way, we have

i−1∑
d= j+1

q∗
d =

i−1∑
d= j+1

qd .

Combining it with:
j∑

d=1

q∗
d =

j∑
d=1

qd ,

we come up with:

i−1∑
d=1

q∗
d =

i−1∑
d=1

qd .

Based on the induction hypothesis, we have q∗
l = ql when

l < i .
Let l > i be the smallest number such that q∗

l > 0 and l /∈
S based on the optimality of the Walk-and-Stop algorithm:

C(q∗
1 , . . . , q∗

i + 1, vi+1, . . . , 0 (contractl), . . . , vn)
< C(q∗

1 , . . . , q∗
i , vi+1, . . . , 1, . . . , vn).

Note that for i < d < l, we have vd = q∗
d ; thus,

C(q∗
1 , . . . , q∗

i + 1, q∗
i+1, . . . , 0 (contractl), . . . , vn)

< C(q∗
1 , . . . , q∗

i , q∗
i+1, . . . , 1, . . . , vn),

and finally

C(q∗
1 , . . . , q∗

i + 1, . . . , q∗
l − 1, . . . , q∗

n )
< C(q∗

1 , . . . , q∗
i , . . . , q∗

l , . . . , q∗
n ),

contradicting the optimality of q∗.
Theorem 4 follows immediately from Claim 3. �
Proof of Theorem 5. We prove the theorem in two parts
to show that the optimal solution must guarantee the ra-
tionality and correctness of Equations (7) and (8).

1. Let

αik =
(
cik − cik+1

)
(

h′
ik+1

− h′
ik

) ,

where ik and ik+1 are two consecutive active contracts.
Conditions (7) and (8) require that αik ∈ [0, 1] and {αik}
are a non-increasing series. We call it the convex hull
property and claim that the optimal solution of PRMS
must have this property. Any solution that does not have
the convex hull property cannot be the optimal solution.
A solution A has active contract set {i1 <

i2 < · · · < i|A|}. q∗
ik

denotes the reservation quantity of
option contract ik, k = 1, . . . , |A|. We consider three
conditions.
1. If αik < 0 for certain k, cik < cik+1 . We modify solution

A to B by setting:

q̃ik+1 = 0, q̃ik = q∗
ik

+ q∗
ik+1

.

For any realization of demand and spot price, modify
the second-stage decision to

x̃ik+1 (D, Ps) = 0, and x̃ik(D, Ps)
= xik(D, Ps) + xik+1 (D, Ps).

The modified solution B has a smaller procure-
ment cost than A, as the setup cost of option con-
tract ik+1 is removed, cik × q̃ik < cik × q∗

ik
+ cik+1 ×

·q∗
ik+1

, and h′
ik

× x̃ik (D, Ps) < h′
ik

× xik (D, Ps) + × ·
xik+1 (D, Ps). Thus, solution A cannot be the optimal
solution.

2. If αik > 1 for certain k, cik − cik+1 > h′
ik+1

− h′
ik

> 0,
and cik + h′

ik
> cik+1 + h′

ik+1
. We modify the solution

A to B by

q̃ik = 0, q̃ik+1 = q∗
ik+1

+ q∗
ik

and modify the second stage decision as

x̃ik (D, Ps) = 0, x̃ik+1 (D, Ps)
= xik+1 (D, Ps) + xik (D, Ps) .

The modified solution B has a smaller procurement
cost than A, as the setup cost for option contract ik
is removed, and

cik × q∗
ik

+ cik+1 × q∗
ik+1

+ h′
ik

× xik + h′
ik+1

× xik+1

= cik × (q∗
ik

− xik) + (cik + h′
ik

) × xik + cik+1

× (q∗
ik+1

− xik+1 ) + (cik+1 + h′
ik+1

) × xik+1

> cik+1 × (q∗
ik

− xik) + (cik+1 + h′
ik+1

) × xik + cik+1

×(q∗
ik+1

− xik+1 ) + (cik+1 + h′
ik+1

) × xik+1

= cik+1 × q̃ik+1 + h′
ik+1

× x̃ik+1 (D, Ps).
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3. If αik ∈ [0, 1] but {αik} are not non-increasing series,
e.g., 0 ≤ αik < αik+1 ≤ 1, it is easy to see that option
ik+1 is dominated by options ik and ik+2. Similar to
the proof above, we can modify solution A to B by
reducing the reservation quantity of contract ik+1 to
be zero and adding certain reservation quantity to
contract ik and ik+2. We also modify the second-
stage decision appropriately. B is a better solution
than A, since the setup cost of contact ik+1 is gone
and the reservation as well as execution cost is also
reduced.

2. Every solution of PRMS is denoted by the set of active
contracts and the corresponding reserving quantity. For
any solution, say A, that does not satisfy the equality
in Equations (7) or (8), we prove its non-optimality by
perturbing it to a better one, say B, without changing
the set of active contracts.

For solution A, if Condition (7) is not satisfied, for
example “<” instead of “=” holds for certain k, then
we change solution A to B by increasing q∗

ik
by ε(ε > 0)

and decreasing q∗
ik+1

by ε, while keeping q∗
ik+1

− ε > 0.
The total procurement cost of B will change by the
following amount.
1. Total setup cost does not change, since the active

contracts do not change.
2. Reservation cost will change by ε(cik − cik+1 ).
3. In the event that D ≤ ∑k

r=1 q∗
ir

or Ps ≤ hik, the
change does not affect the execution cost, and thus
has no effect on the total procurement cost.

4. In the event that D >
∑k

r=1 q∗
ir

and Ps > hik , the
change in execution cost will be ε(hik − Ps) if
hik < Ps < hik+1 and ε(hik − hik+1 ) if hik+1 < Ps.

The change in total procurement cost will be

ε

{
(cik − cik+1 ) −

∫ ∞
∑k

r=1 q∗
ir

[∫ hik+1

hik

(Ps − hik)

+
∫ ∞

hik+1

(hik+1 − hik)

]
f (D, Ps)dPsdD

}

= ε

{
(cik −cik+1 )−P

(
D >

k∑
r=1

q∗
ir

) (
h′

ik+1
− h′

ik

)}

< 0.

On the other hand, if “>” instead of “=” holds
in Condition (7), we change solution A to B by
decreasing q∗

ik
by ε(ε > 0) and increasing q∗

ik+1
by

ε, while keeping q∗
ik

− ε > 0. Solution B still has a
smaller procurement cost than solution A.

Similarly, if Condition (8) is not satisfied, say “<”
instead of “=” holds, we can change solution A to B
by increasing q∗

i|A| by ε and decreasing z∗ by ε while
keeping z∗ − ε > 0. The change in total procurement

cost will be

ε

{
ci|S| − P

(
D >

|S|∑
r=1

q∗
ir

) (
E(Ps) − h′

i|S|

)}
< 0.

On the other hand, if Condition (8) is not satisfied,
say “>” instead of “=” holds, we can change solution
A to B by decreasing q∗

i|A| by ε and increasing z∗ by
ε while keeping q∗

i|A| − ε > 0. Solution B still has a
smaller procurement cost than solution A.

In summary, the optimal solution of PRMS must satisfy
Conditions (7) and (8). �
Proof of Theorem 6. Given a reservation solution, the op-
timal execution strategy in stage 2 is just a greedy fashion,
and the total cost can be deduced easily.

CS(q∗)
= c1q∗

1 + c2q∗
2 + · · · + cNq∗

N + K1 + K2 + · · · + KN

+ E(D)
∫ h1

0
Psg(Ps)dPs

+
∫ h2

h1

{h1 E[min(D, q∗
1 )] + Ps E[D − min(D, q∗

1 )]}g
× (Ps)dPs

.

.

+
∫ hN

hN−1

{
h1 E[min(D, q∗

1 )]

+
N−1∑
i=2

hi E

[
min

(
D,

i∑
r=1

q∗
r

)
− min

(
D,

i−1∑
r=1

q∗
r

)]

+ Ps E

[
D − min

(
D,

N−1∑
r=1

q∗
r

)]}
g (Ps) dPs

+
∫ ∞

hN

{
h1 E[min(D, q∗

1 )]

+
N∑

i=2

hi E

[
min

(
D,

i∑
r=1

q∗
r

)
− min

(
D,

i−1∑
r=1

q∗
r

)]

+ Ps E

[
D − min

(
D,

N∑
r=1

q∗
r

)]}
g (Ps) dPs.

Note that

c1q∗
1 + c2q∗

2 + · · · + cNq∗
N

= (c1 − c2) q∗
1 + (c2 − c3) (q∗

1 + q∗
2 )

+ · · · + (cN−1 − cN)
N−1∑
i=1

q∗
i

h′
i ≡ E [min (hi , Ps)] =

∫ hi

0
Ps g (Ps) dPs

+
∫ ∞

hi

hi g (Ps) dPs
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and

E

[
min

(
D,

i∑
r=1

q∗
r

)]

=
∫ ∑i

r=1 q∗
r

0
Df (D)dD + Pr

(
D >

i∑
r=1

q∗
r

)
×
(

i∑
r=1

q∗
r

)
.

Rearranging the terms and using Properties (7) and (8), we
obtain:

CS(q∗)

= K1 + K2 + · · · + KN + E(D)
∫ h1

0
Psg (Ps) dPs

+
N−1∑
i=1

[
hi

∫ ∞

hi

g (Ps) dPs ×
∫ ∑i

r=1 q∗
r

0
Df (D)dD

− hi+1

∫ ∞

hi+1

g (Ps) dPs ×
∫ ∑i

r=1 q∗
r

0
Df (D)dD

+
∫ hi+1

hi

Psg (Ps) dPs ×
∫ ∞
∑i

r=1 q∗
r

Df (D)dD

]

= K1 + K2 + · · · + KN + E(D)
∫ h1

0
Psg (Ps) dPs

+
N−1∑
i=1

[
h′

i

∫ ∑i
r=1 q∗

r

0
Df (D)d D

− h′
i+1

∫ ∑i
r=1 q∗

r

0
Df (D)d D

+
(∫ hi+1

hi

Psg (Ps) dPs

)
E(D)

]

= K1 + K2 + · · · + KN + E(D)E(Ps)

+
N−1∑
i=1

[
h′

i

∫ ∑i
r=1 q∗

r

0
Df (D)dD

− h′
i+1

∫ ∑i
r=1 q∗

r

0
Df (D)dD

]

+ h′
N

∫ ∑N
r=1 q∗

r

0
Df (D)dD − E(Ps)

∫ ∑N
r=1 q∗

r

0
Df (D)dD

= K1 +
N−1∑
i=1

(
Ki+1 + h′

i

∫ ∑i
r=1 q∗

r

0
Df (D)dD

− h′
i+1

∫ i∑
r=1

q∗
r

0
Df (D)dD

⎞
⎠

+ h′
N

∫ ∑N
r=1 q∗

r

0
Df (D)dD + E (Ps)

∫ ∞
∑N

r=1 q∗
r

Df (D)dD

�

Algorithm 2 (The Shortest Monotone Path Algorithm).
Input: ci , hi , and Ki , i = 1, . . . , n, F(D), and G(Ps).

Output: Optimal ordering quantities of each option contract;
optimal procurement cost

Step 1: Construct the directed network.
Construct a graph with n + 2 nodes. Nodes O and
E are indexed as 0 and n + 1, respectively. For each
arc(i, j ), 0 ≤ i < j ≤ n + 1, compute ki, j and di, j .
For each node i , define array dist(i ) with length i ,
and let the tth element dist(i, t) denote the shortest
monotone distance from node O to node i with
predecessor t − 1.

Step 2: Find distance labels for each node with all possible
predecessors.

Do
for i = 1, 2, . . . , n + 1

set dist(i, 1) = d0i
end for;
for i = 2, 3, . . . , n + 1

for t = 2, 3, . . . , i
if t = 2

set dist(i, t) = d01 + d1i
else

set min = dist(t − 1, 1)
for tt = 2, 3, . . . , t − 1

if ktt−1,t−1 < kt−1,i and dist(t −
1, tt) < min

set min = dist(t − 1, tt)
end if

end for
set dist(i, t) = min + dt−1,i

end if
end for

end for;
Step 3: Trace back for the optimal solution.

Construct an empty array PATH with element
denoting the node index. Let n + 1 be the first
element of PATH. Among all of the valid dis-
tance labels of node n + 1, choose the one with the
smallest label, say j . Then dist(n + 1, j ) denotes
the shortest-monotone distance that is equal to the
optimal procurement cost. Let pred = j − 1 and
distpred = dist(n + 1, j ) − d j−1,n+1. Let pred be the
first element of PATH.
while the first element in PATH >1

for i = 1, . . . , pred
if dist(pred,i) = distpred

set distpred = dist(pred,i) − di−1, pred
and pred = i − 1

end if
end for
put pred first in PATH

end while

The elements in PATH denote the index of the active op-
tion contracts in the optimal solution. The corresponding
ordering quantity can be found from ki, j .
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