
Advanced Algorithms

1

Clustering

5

Imaging that you have designing T-shirt for consumers. You
are looking at your consumers’ weight and height, which
would allow you to decide how many sizes to offer and
which size fits a particular individual. Instead of classifying
your consumers arbitrarily, you can use data to perform the
task more precisely.

6

Why offer 7 sizes? Are these sizes optimal?
Image credit: taobao.com

7

Here is consumer data. How would you classify
them into groups?

8

9

The -means Algorithm

The -means algorithm an EM (expectation-maximization)
algorithm commonly used for classifying objects.

Input: A number of observations () and , the
number of groups to be classified
Output: mutually exclusive and collectively exhaustive
groups containing all observations

K

K

X ,X ,… ,X1 2 n k

k

10

Classify the following observations into groups:k = 2

11

Step 1: Random choose “centers” for your
clusters.

k = 2

12

Step 2: Assign each observation to the nearest center.

13

Step 3: Update the location the centers, which is given
by the average location of all points in the

corresponding cluster.

14

Repeat the above process again and again until the
centers no longer change.

15

The -means algorithm:K

16

https://www.youtube.com/embed/R2e3Ls9H_fc?enablejsapi=1

17

https://www.youtube.com/embed/R2e3Ls9H_fc?enablejsapi=1

Performing -means with Python:K

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
data = pd.read_csv('https://ximarketing.github.io/data/clustering.csv')
print(data)

1
2
3
4
5
6
7

The input is a CSV file containing the X
and Y coordinates of some individuals.

18

sns.scatterplot(data = data, x = 'X', y = 'Y')
plt.show()

1
2

Let's visualize these locations!

How many groups do they belong to?

19

kmeans = KMeans(n_clusters = 3, random_state = 0, n_init='auto')
kmeans.fit(data)
sns.scatterplot(x = data['X'], y = data['Y'], hue = kmeans.labels_)
centers = kmeans.cluster_centers_
sns.scatterplot(x = centers[:, 0], y = centers[:, 1],
 color = 'blue', s=100, marker='+')
plt.show()

1
2
3
4
5
6
7

Now, we use the KMeans function to classify the observations. If
you don’t understand the code, ask GPT:

20

Does it look good?
21

Let's try five groups instead...

22

Exercise
Use ChatGPT to generate a desktop APP which

demonstrates the K-means algorithm

23

Question:
What is the optimal number of clusters?

24

We use a measure called “Silhouette Score.”

It is done in the following way:

1. For each data point, calculate the average distance
between the data point and all other points in the same
cluster. This is called the intra-cluster distance.

2. For each data point, calculate the average distance
between the data point and all other points in the
nearest cluster. This is called the nearest-cluster distance.

3. Calculate the silhouette score for each data point as
(nearest-cluster distance - intra-cluster distance) /
nearest-cluster distance.

4. The overall silhouette score is the average of the
silhouette scores for all data points.

25

We use a measure called “Silhouette Score.”

The idea is simple: Each point should be as close as possible
to points in the same cluster, and as far as possible from
points in other clusters.

It should be value between 0 and 1. The greater the score is,
the better the algorithm performs.

26

K = range(2, 8)
fits = []
score = []
for k in K:
 model = KMeans(n_clusters=k, random_state=0, n_init='auto').fit(data)
 fits.append(model)
 score.append(silhouette_score(data, model.labels_, metric='euclidean'))
sns.lineplot(x = K, y = score)
plt.show()

1
2
3
4
5
6
7
8
9

3 is the optimal number!

27

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
data = pd.read_csv('https://ximarketing.github.io/data/clustering.csv')
print(data)
sns.scatterplot(data = data, x = 'X', y = 'Y')
plt.show()
kmeans = KMeans(n_clusters = 5, random_state = 0, n_init='auto')
kmeans.fit(data)
sns.scatterplot(x = data['X'], y = data['Y'], hue = kmeans.labels_)
centers = kmeans.cluster_centers_
sns.scatterplot(x = centers[:, 0], y = centers[:, 1],
 color = 'blue', s=100, marker='+')
plt.show()
K = range(2, 8)
fits = []
score = []
for k in K:
 model = KMeans(n_clusters=k, random_state=0, n_init='auto').fit(data)
 fits.append(model)
 score.append(silhouette_score(data, model.labels_, metric='euclidean'))
sns.lineplot(x = K, y = score)
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
data = pd.read_csv('https://ximarketing.github.io/data/clustering.csv')
print(data)
sns.scatterplot(data = data, x = 'X', y = 'Y')
plt.show()
kmeans = KMeans(n_clusters = 5, random_state = 0, n_init='auto')
kmeans.fit(data)
sns.scatterplot(x = data['X'], y = data['Y'], hue = kmeans.labels_)
centers = kmeans.cluster_centers_
sns.scatterplot(x = centers[:, 0], y = centers[:, 1],
 color = 'blue', s=100, marker='+')
plt.show()
K = range(2, 8)
fits = []
score = []
for k in K:
 model = KMeans(n_clusters=k, random_state=0, n_init='auto').fit(data)
 fits.append(model)
 score.append(silhouette_score(data, model.labels_, metric='euclidean'))
sns.lineplot(x = K, y = score)
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The complete code is here:

28

The -means algorithm can also be used for image
compression. How could this be done?

k

29

How would you compress this image?

30

Image Compression

An image has millions of pixels. Each pixel is represented
by its RGB color, e.g., .

For each pixel, you need to save a lot of information! There
are possible color
combinations for each pixel. This requires a lot of storage.

(127, 176, 96)

256 × 256 × 256 = 16, 777, 216

31

Image Compression

The idea is that we do not need so many colors! Some colors
are very similar and we can combine them into a single
color. For instance, consider two pixels, and

. Their colors are very much similar and we can
combine them into a single color.

(45, 80, 97)
(46, 79, 98)

32

Image Compression

If we combine similar colors and come up with only 20
possible colors for the images, the size of the image will be
much smaller! Previous, each pixel is represented by a
vector , where . Now, each pixel is
represented by simply one number , where
 denotes the first color, and so on.

(r , g , b)i i i 0 ≤ r , b , g ≤i i i 255
0 ≤ x ≤i 19 x =i

0

33

The algorithm

Each pixel is represented by a point in the 3D space, .
Cluster the points into clusters, call them cluster

.
Calculate the centroid (i.e., center) of each cluster.
Replace the color of each pixel with the color of the
corresponding centroid, and when saving the image, only save
the corresponding cluster number .

(r , g , b)i i i

k j =
1, 2,… , k

j

34

Calculate the following integral:

dx∫
0

1

x

39

Monte Carlo Algorithm

40

Integral is the area below the line f(x) = x

41

The area size of blue + orange = 1
We want to calculate the fraction of the orange area

42

The idea is as follows. We random draw a large number of points
in the area , and count how many points are above .
The size can be calculated as follows:

[0, 1] × [0, 1] x

size of orange area = ×
total number of points
number of orange points

1

43

Algorithm:

1. Randomly choose points that are uniformly
distributed over . Denote these points
by .

2. Calculate how many points satisfy ,
denote by count_below.

3. The size of the area is count_below/K.

K

[0, 1] × [0, 1]
(x ,x),… , (x , y)1 2 K K

y <i xi

44

import random
import math
K = 10000
count_below = 0
for i in range(0, K):
 x = random.uniform(0, 1)
 y = random.uniform(0, 1)
 if y <= math.sqrt(x):
 count_below = count_below + 1
print (count_below/K)

1
2
3
4
5
6
7
8
9
10

The complete code is here:

45

Exercise: Calculate the value of .π

46

Exercise: Calculate the value of .

In 1733, the French mathematician Buffon first came up
with a probabilistic method to calculate numerically. He
threw needles to parallel lines, and found that the
probability that a needle crosses a line is a function of .
Based on that, he calculated the value of .

In Chinese, this is known as “布丰投针”.

π

π

π

π

47

https://www.youtube.com/embed/kazgQXaeOHk?enablejsapi=1

48

https://www.youtube.com/embed/kazgQXaeOHk?enablejsapi=1

Exercise
Use ChatGPT to generate a desktop APP which
demonstrates how to calculate numerically.

π

50

Dynamic Programming

51

Question

You are climbing a staircase. It takes 10 steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many
distinct ways can you climb to the top?

52

A More General Question

You are climbing a staircase. It takes steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many
distinct ways can you climb to the top?

n

53

https://www.youtube.com/embed/tOYZcy2IzJA?enablejsapi=1

57

https://www.youtube.com/embed/tOYZcy2IzJA?enablejsapi=1

Exercise: Answer the question for .n = 10

58

60

Exercise: Write the code yourself

input = [[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1],
 [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
 [1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Here, 1 means a stone and 0 means a feasible block

69

distance = [[-1] * 15 for _ in range(15)]
distance[0][0] = 0

for round in range(100):
 for i in range(15):
 for j in range(15):
 if distance[i][j] == round:
 if ((i>=1) and (distance[i-1][j]==-1) and input[i-1][j]==0):
 distance[i-1][j] = round + 1
 if ((j>=1) and (distance[i][j-1]==-1) and input[i][j-1]==0):
 distance[i][j-1] = round + 1
 if ((i<=13) and (distance[i+1][j]==-1) and input[i+1][j]==0):
 distance[i+1][j] = round + 1
 if ((j<=13) and (distance[i][j+1]==-1) and input[i][j+1]==0):
 distance[i][j+1] = round + 1

print(distance[14][14])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Reference Solution

The answer is 46.

70

Exercise
Use ChatGPT to generate an interactive APP which

demonstrates the algorithm as a game

71

Tower of Hanoi (汉诺塔)

72

Tower of Hanoi

You want to move disks from rod A to rod C. Here are the rules:

Only one disk can be moved at each round.
Each move consists of taking the upper disk from one of the stacks
and placing it on top of another stack or on an empty rod.
No disk may be placed on top of a disk that is smaller than it.

n

73

How to solve the problem?

74

Divide-and-Conquer

78

Exercise: Write a program which solves the Hanoi problem
given any . The output is a few steps such as ,

, , etc.
n A→ B B →

C B → A

79

def tower_of_hanoi(n, source, target, auxiliary):
 if n == 1:
 print(f"Move disk 1 from rod {source} to rod
{target}")
 return
 tower_of_hanoi(n-1, source, auxiliary, target)
 print(f"Move disk {n} from rod {source} to rod {target}")
 tower_of_hanoi(n-1, auxiliary, target, source)

n = 3 # Number of disks
source_rod = 'A'
target_rod = 'C'
auxiliary_rod = 'B'

print(f"Solving Tower of Hanoi problem for {n} disks:")
tower_of_hanoi(n, source_rod, target_rod, auxiliary_rod)

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15

80

Exercise: Can you propose another algorithm which uses
the idea of divide-and-conquer?

81

