First, you can directly load the dataset from the following URL:

mydata <- read.csv("https://ximarketing.github.io/class/Kickstarter-Project.csv", 
                   fileEncoding = "UTF-8-BOM")
summary(mydata)
##      URL               Outcome           Target          FundingRaised    
##  Length:6958        Min.   :0.0000   Min.   :        1   Min.   :      0  
##  Class :character   1st Qu.:0.0000   1st Qu.:     7000   1st Qu.:     35  
##  Mode  :character   Median :0.0000   Median :    20000   Median :   1000  
##                     Mean   :0.3067   Mean   :   114663   Mean   :  39350  
##                     3rd Qu.:1.0000   3rd Qu.:    50000   3rd Qu.:  12302  
##                     Max.   :1.0000   Max.   :100000000   Max.   :6225355  
##     Backers           Comments           Location           Subtype         
##  Min.   :     0.0   Length:6958        Length:6958        Length:6958       
##  1st Qu.:     2.0   Class :character   Class :character   Class :character  
##  Median :    14.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :   321.9                                                           
##  3rd Qu.:   109.0                                                           
##  Max.   :105857.0                                                           
##     Duration      PhotosNumber    NumberOfProducts     Price        
##  Min.   : 1.00   Min.   :  0.00   Min.   : 1.000   Min.   :    0.0  
##  1st Qu.:30.00   1st Qu.:  0.00   1st Qu.: 4.000   1st Qu.:   35.0  
##  Median :30.00   Median :  4.00   Median : 7.000   Median :   75.0  
##  Mean   :35.65   Mean   :  9.09   Mean   : 7.367   Mean   :  220.1  
##  3rd Qu.:41.00   3rd Qu.: 13.00   3rd Qu.:10.000   3rd Qu.:  160.0  
##  Max.   :90.00   Max.   :111.00   Max.   :64.000   Max.   :10000.0  
##     Updates           Gender             Created            Backed       
##  Min.   :  0.000   Length:6958        Min.   : 0.0000   Min.   :  0.000  
##  1st Qu.:  0.000   Class :character   1st Qu.: 0.0000   1st Qu.:  0.000  
##  Median :  1.000   Mode  :character   Median : 0.0000   Median :  0.000  
##  Mean   :  6.057                      Mean   : 0.7305   Mean   :  4.127  
##  3rd Qu.:  8.000                      3rd Qu.: 0.0000   3rd Qu.:  3.000  
##  Max.   :118.000                      Max.   :34.0000   Max.   :749.000  
##     FbNumber      IsVideoAvailable   VideoURL          VideoLength    
##  Min.   :   0.0   Min.   :0.0000   Length:6958        Min.   :   0.0  
##  1st Qu.:   0.0   1st Qu.:1.0000   Class :character   1st Qu.:  20.0  
##  Median :   0.0   Median :1.0000   Mode  :character   Median : 120.0  
##  Mean   : 290.2   Mean   :0.7604                      Mean   : 128.8  
##  3rd Qu.: 331.0   3rd Qu.:1.0000                      3rd Qu.: 188.0  
##  Max.   :5000.0   Max.   :1.0000                      Max.   :3576.0  
##      Human           Computer          Energy          Content      
##  Min.   :0.0000   Min.   :0.0000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median :1.0000   Median :1.0000   Median : 3.160   Median : 0.000  
##  Mean   :0.5961   Mean   :0.5296   Mean   : 3.789   Mean   : 0.205  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.: 5.267   3rd Qu.: 0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :46.824   Max.   :24.000  
##      Upset            Angry           MaxAmpVol     
##  Min.   : 0.000   Min.   : 0.0000   Min.   :  0.00  
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:  0.00  
##  Median : 1.095   Median : 0.0000   Median : 33.59  
##  Mean   : 1.766   Mean   : 0.1539   Mean   : 36.60  
##  3rd Qu.: 2.549   3rd Qu.: 0.0000   3rd Qu.: 51.93  
##  Max.   :19.250   Max.   :16.7460   Max.   :265.73

Note that because the distributions of Funding Raised and Project Target are highly skewed, we can take the logarithm transformation of the two variables by applying the log function in R. Note that we add “+1” here to avoid the case log(0).

mydata$LogTarget = log(mydata$Target + 1)
mydata$LogFundingRaised = log(mydata$FundingRaised + 1)

Consider the following linear regression: We want to see how the target and the gender of entrepreneurs affect the total funding raised. We use Log Funding as the Depedent Variable, Log Target as the Indepedent Variable, and Gender as a fixed effect (because it is not a value).

result <- lm(LogFundingRaised ~ LogTarget + factor(Gender), data = mydata)
summary(result)
## 
## Call:
## lm(formula = LogFundingRaised ~ LogTarget + factor(Gender), data = mydata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.7784 -2.5546  0.5721  2.8824  8.4655 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.80035    0.29177  13.025  < 2e-16 ***
## LogTarget        0.24741    0.02629   9.413  < 2e-16 ***
## factor(Gender)M -0.83097    0.16238  -5.117 3.18e-07 ***
## factor(Gender)U  1.42051    0.16469   8.625  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.647 on 6954 degrees of freedom
## Multiple R-squared:  0.09563,    Adjusted R-squared:  0.09524 
## F-statistic: 245.1 on 3 and 6954 DF,  p-value: < 2.2e-16

From the result, we can see that when the target increases, the project is likely to receive more funding. Moreover, compared with females, makes (M) attract less funding while Unknown (U) gender types attract more funding.