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Do Spoilers Really Spoil? Using Topic o tirerions
Modeling to Measure the Effect of Spoiler Sipicomouh poioubuts
Reviews on Box Office Revenue e S SAGE
Jun Hyun (Joseph) Ryoo®, Xin (Shane) Wang®, and Shijie Lu®
Empirical Analysis
Model of Box Office Revenue
Let i denote movies and t denote the days after release. The
dependent variable is In{DAILYREV),, which represents TR T 1%3 , AR T {—.‘;‘7 ,
the log-transformed daily box office revenue for movie i on £ to B = A o
day 1. To examine the relationship between spoiler reviews and EIJ %ﬁi ERE) E’J %ﬁl E’Z’T&
box office revenue, we considered the following model
specification:
In (DAILYREV), = B, In (DAILYREV),, , R FFEAK,, T Z K,
; In (INTENSITY), 3, PROP 9 = . .
e i 0r "1 BlEALRE | BIEAR B
+ B4 In (CUMRATING),, , +PB<In(CUMVOL),, ,
+ ¢ In(ADVERT),, , + B, In(THEATERS),

+PBst + Py HOLIDAY 4

[

+ E ¥il{ DAYOFWEEK ; = d} 4 +¢€;
d=1
(6)

FABF (UM) 2020, F4 P 6981 EAZ BT VUH BN % % 00 R Ie ke, i @Y 23
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Stimulating Consumption at Low Budget: Evidence from a
Large-Scale Policy Experiment Amid the COVID-19 Pandemic
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Received: Novambee 4, 2020 Abstract. We use a novel panel with detailed transaction records of more than one million
Rovised: Fabruary 11, 2021 de-identified individuals to study the effect of a large-scale Chinese government-issued
Accepted: March 12, 2021 digital coupon program on consumer spending. Exploiting a difference-in-differences ap-

. Published Owline in Articies in Advance: proach, we find that the digital coupon is highly effective in stimulating consumption, An

R -FHEAFOEKER (NE. 1. M. effective government subsidy of RMB 1 can drive excess spending of RMB 3.4 to RMB 5.8,

3.2. Data SZGEERS. ERABSES) . BT AME and the effect persists across multiple coupon issuance waves. In explaining the results, we

o eorbecirdatdmn ittt S P R e find that a behavioral model with mental accounting and loss aversion can match the em-

We use individual-level data from Alipay for the pirical evidence from the field, Our analysis, by illustrating the importance of embedding

ana.lysis. The basic function of A.lipay is an e-wallet, behavioral factors into the design and implementation of public policy, informe tha mummant
which allows users to transfer money and make pay- debate about cost-effective policy tools to recover the economy. IR "

ments for both online and offline transactions. Users Cum O

can link their major bank accounts to the service. b s
In addition, Alipay offers other financial services, in- M H)‘Hﬂﬁiiﬁﬂ
cluding virtual credit card services, Huabei, and finan- L T T T

cial management tools in the app. We have access to & ‘7L .
the de-identified account level transaction details for
a total number of 1 million individuals sampled in
this study.”

For each individual in the sample, we observe the
complete transaction information of the account and
the account holder’s personal attributes, such as gen-
der and age. The transaction-level data include the
transaction time, transaction amount, the usage of
coupon (if any), merchant category, and whether the
transaction is online or offline, The advantage of this
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Structured, uncertainty-driven exploration in

real-world consumer choice

Eric Schulz*'?, Rahul Bhui®', Bradley C. Love®*, Bastien Brier?, Michael T. Todd", and Samuel J. Gershman®

*Department of Psychology, Harvard University, Cambridge, MA 02138; "Department of Experimental Psychology, University College London, London
WC1H 0AP, United Kingdom; ‘The Alan Turing Institute, London NW1 2DB, United Kingdom; and “Data Science Team, Defiveroo,

London ECAR 3TE, United Kingdom

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved May 23, 2019 (received for review December 10, 2018)

Making good decisions requires people to appropriately explore
their available options and generalize what they have learned.
While computational models can explain exploratory behavior in
constrained laboratory tasks, it is unclear to what extent these
models generalize to real-world choice problems. We investigate
the factors guiding exploratory behavior in a dataset consisting
of 195,333 customers placing 1,613,967 orders from a large online
food delivery service. We find important hallmarks of adaptive
exploration and generalization, which we analyze using com-
putational models. In particular, customers seem to engage in
uncertainty-directed exploration and use feature-based general-
ization to guide their exploration. Our results provide evidence
that people use sophisticated strategies to explore complex,
real-world environments.

exploration | generalization | reinforcement learning | decision making

it is unclear whether these theories can successfully predict
real-world choices.

Our results suggest that customers explore (i.e., order from
unexperienced restaurants) adaptively based on signals of restau-
rant quality and make better choices over time. Exploration
is indeed risky and leads to worse outcomes on average, but
people are more likely to explore in citics where this down-
side is lower due to higher mean restaurant quality. Moreover,
we show that customers’ exploratory behavior might take into
account not only the prospective reward from choosing a restau-
rant, but also the degree of uncertainty in their reward esti-
mates. Consistent with an optimistic uncertainty-directed explo-
ration policy, they preferentially sample lesser-known options
and are more likely to reorder from restaurants with higher
uncertainties.

Importantly, we apply cognitive and statistical modeling to
customers’ choice behavior and find that their choices are best

£ B A% F PNAS, 2019



R B R E AL

1. ¥ 3k4F Accessible

2. AFEH1E8%Z Informative:
- MRMNERES. FAZK

2. 54 KHF % Individual-level: T A FTHBFAMRGIT AN 53R

3. BB R AR RSB AE AR Constructive:
- FARTUEALL, EEAMALR, REALA, JEHZXHEFF
- LR RA KEE L

4. ¥4 Unique: BRATHIKIBEAIERB T LI BT LERKR, RIFBRN:
= RIE WA I E] A

- B2 T2, ARUELERDEREEAF LA (Bl FRXAE. BHIL)




A RE SR A MR E

Table 1. The Echo Nest Sonic ]'“uulum.sl

Attribute Scale Definition

Acousticness 0-1 Represents the Hkelihood that the song was recorded
solely by acoustic means (as opposed to more
electronic/electric means).

Danceability 0-1 Describes how suitable a track is for dancing, This
measure includes tempo, regularity of beat, and beat
strength

Energy 0-1 A perceptual measure of intensity throughout the track,

What Makes Popular Culture Think fus(.Aloud. and noisy {i.e., hard rock) more than

dance tracks.

? Instrumentalness 0-1 The likelihood that a track is predominantly instrumental.
Popular ® Pro duct Fe atures Not necessarily the inverse of speechiness,
Key 0-11 The estimated, overall key of the track, from C through B

and Optimal Diﬂ‘erentiation — (intnj;((;i only) WG, (fnlt:r ku_\'.as a scr-ins .uf dum.m'\' .vuriab.lcs.

Detects the presence of a live audience during the record-
ing. Heavlly studio-produced tracks score low on this

in MuSiC measure

Mode Oor1l Whether the song is in a minor (0) or major (1) key.

Speechiness 0-1 Detects the presence of spoken word throughout the track,
Sung vocals are not considered spoken word

Tempo Beats per minute (BPM) The overall average tempo of a track.

Time Signature Beats per bar/measure  Estimated, overall time signature of the track. 4/4 is the

Noah Askina and Michael Mauskapfb mast common time signfm‘xrv by far and is entered as a

dummy varlable in our analyses.
Valence 0-1 The musical positiveness of the track.

Note: This list of features includes all but one of the attributes provided by The Echo Nest's suite of
algorithms: loudness, We cut this variable from our final analysis at the suggestion of the company's
senior engineer, who explained that loudness is primarily determined by the mastering technology used
to make a particular recording, a characteristic that is confounded through radio play and other forms of
distribution

£ B4 4% 37 ASR, 2017
;!(n'ﬁ‘ﬂ)ﬂ = /\#fra‘i#’\ (Musical Information Retrieval) =4t & 54k auz}%’iéﬁ N A&?
F it b 4 ATk 69 R AS 5 B BHAX A S RS- a9 AR, R Rt T3l £ i A2 B
0 % v
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Word embeddings quantify 100 years of gender

and ethnic stereotypes

Nikhil Garg™', Londa Schiebinger®, Dan Jurafsky“?, and James Zou®*!

“Department of Electrical Engineering, Stanford University, Stanford, CA 94305; *Department of History, Stanford University, Stanford, CA 94305;
“Department of Linguistics, Stanford University, Stanford, CA 94305; “Department of Computer Science, Stanford University, Stanford, CA 94305;
“Department of Biomedical Data Science, Stanford University, Stanford, CA 94305; and "Chan Zuckerberg Biohub, San Francisco, CA 54158

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 12, 2018 (received for review November 22, 2017)

Word embeddings are a powerful machine-learning framework
that represents each English word by a vector. The geometric
relationship between these vectors captures meaningful semantic
relationships between the corresponding words. In this paper, we
develop a framework to demonstrate how the temporal dynamics
of the embedding helps to quantify changes in stereotypes and
attitudes toward women and ethnic minorities in the 20th and
21st centuries in the United States. We integrate word embed-
dings trained on 100 y of text data with the US Census to show
that changes in the embedding track closely with demographic
and occupation shifts over time. The embedding captures societal
shifts—e.g., the women's movement in the 1960s and Asian immi-
gration into the United States—and also illuminates how specific
adjectives and occupations became more closely associated with
certain populations over time. Our framework for temporal anal-
ysis of word embedding opens up a fruitful intersection between
machine learning and quantitative social science.

word embedding | gender sterectypes | ethnic sterectypes

AR E SN T .

in the large corpora of training texts (20-23). For example, the
vector for the adjective honorable would be close to the vector for
man, whereas the vector for submissive would be closer to woman.
These stercotypes are automatically learned by the embedding
algorithm and could be problematic if the embedding is then used
for sensitive applications such as search rankings, product recom-
mendations, or translations, An important direction of research is
to develop algorithms to debias the word embeddings (20).

In this paper, we take another approach. We use the word
embeddings as a quantitative lens through which to study histor-
ical trends—specifically trends in the gender and ethnic sterco-
types in the 20th and 21st centuries in the United States. We
develop a systematic framework and metrics to analyze word
embeddings trained over 100 y of text corpora, We show that
temporal dynamics of the word embedding capture changes in
gender and ethnic stereotypes over time. In particular, we quan-
tify how specific biases decrease over time while other stereo-
types increase. Moreover, dynamics of the embedding strongly
correlate with quantifiable changes in US society, such as demo-
graphic and occupation shifts. For example, major transitions in

£ B3 212 F) PNAS, 2019
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Women Occupation % Difference

Fig. 1. Women's occupation relative percentage vs. embedding bias in
Google News vectors, More positive indicates more associated with women
on both axes P < 10 '°, ¥ = 0.499. The shaded region is the 95% baot-
strapped confidence interval of the regression line. in this single embedding,
then, the association in the embedding effectively captures the percentage
of women in an occupation.
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https://www.youtube.com/watch?v=TNzDMOg_zsw
http://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset
http://snap.stanford.edu/data/index.html
https://dataverse.harvard.edu/
https://awesomeopensource.com/
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- Twitter:
- Youlube:
- IMDb:
- 2
- Spotify:
- ABEAE:

- Steam:



https://developer.twitter.com/en/docs/twitter-api
https://developers.google.com/youtube/v3
https://developer.imdb.com/
https://www.doubanapi.com/
https://developer.spotify.com/documentation/web-api/
https://github.com/Binaryify/NeteaseCloudMusicApi
https://steamcommunity.com/dev

MATFAHZSFH 5

m YGeniusF R IM-FE AP .

PLEINE 6

Search lyrics & more Q
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FEATURED CHARTS VIDEOS PROMOTE FORUMS

ADD A SONG

NEWS

NIKI Relives Teenage
Love On New Song
“High School In

Jakarta”

It's the latest single off her forthcoming album,

‘Nicole!

by Lesh Degrazia /

NEWS

Drake Flips '70s
Classic On New D
Khaled And Lil
Baby Collab
“STAYING ALIVE"

by Laah Degrazia /

NEWS

Read All The Lyrics
To Calvin Harris’
New Album ‘Funk
Wav Bounces, Vol.
2

by Laah Degrazia /

NEWS

Benny Blanco
Recruits BTS &
Snoop Dogg For
New Song “Bad
Decisions”

by Laah Degrazia /

NEWS

Read All The Lyrics
To YoungBoy
Never Broke
Again’s New
Album ‘The Last
Slimeto’

by Laah Degrazia /
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https://www.bazhuayu.com/
https://stevesie.com/
https://www.postman.com/solar-flare-375895/workspace/spider/documentation/3194348-da2b8207-b341-4679-845e-57ff2b9a2ec5
https://apify.com/jaroslavhejlek/kickstarter-search#input
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https://www.runoob.com/w3cnote/python-spider-intro.html

