
Web Scraping
Gathering Data from the Web

Web Scraping!

You may want to…
download all videos from a website;
download all news articles from a media platform;
download all academic papers from a journal;
download all tweets/weibo of a specific person.

You may need to spend days and nights downloading these
data manually, and you can easily make a lot of mistakes.

Web Scraping!

In today’s class, we are going to learn about webscraping.
In Chinese, it is called 网络爬虫.

What is webscraping?
Using tools to gather data you can see on a webpage.
Almost anything you see on a website can be scraped.

It can be done with python, R,… We are doing it on R.

Learning about HTML

HTML: HyperText Markup Language.

Websites are written on the HTML language.

Webscraping is based on reading and interpreting the HTML
of a webpage.

But how to find the HTML of a webpage?

Learning about HTML

The data you want to scrape appears in certain place of the
HTML. For example, suppose that you want to scrape data
from the HKU marketing faculty webpage:

https://www.fbe.hku.hk/people/faculty?pg=1&staff_type=faculty&subject_area=marketing&track=professoriate

Learning about HTML

You can find the name and images of the professors from the
HTML file:

Learning about HTML

For example, it provides you with the link to their profile
photos:

https://www.fbe.hku.hk/wp-content/uploads/fly-images/11554/FBE_0712_web--scaled-800x800-ct.jpg

Webscraping

Suppose that you want to download the names of each
individual marketing faculty, what should you do?

First, you need to get the HTML for the webpage.

Second, you need to analyze the HTML to get the desired
information --- this is much more difficult.

Webscraping

install.packages("rvest")

library(rvest)

url =

"https://www.fbe.hku.hk/people/faculty?pg=1&s

taff_type=faculty&subject_area=marketing&trac

k=all"

webpage = read_html(url, encoding = "UTF-8")

print(webpage)

Webscraping

Now, you get the HTML source file here. The next thing you
need to do it to understand the HTML file, which is very
challenging.

Webscraping

To better understand the HTML code, you are strongly
recommended to use Chrome as your browser.

Chrome allows you to check the HTML code in a convenient
matter.

Check HTML with Chrome

Open the webpage in your
Chrome browser.

Click the upper right Chome
setting button of your browser
and you will be directed here.

Check HTML with Chrome

Choose “More tools”…

Choose “Developer tools”…

Check HTML with Chrome

Click the button and you
will get to “select an element
in the page to inspect it”.

Alternatively, use “Ctrl + Shift
+ C”

Check HTML with Chrome

Take Prof. Dang’s information
as an example.

You can see her name appears
here in the HTML code.

But what does this mean?

Check HTML with Chrome

Take Prof. Dang’s information
as an example.

You can see her name appears
here in the HTML code.

But what does this mean?

UNDERSTANDING HTML

Here, the name information is within an “h5” node.

And this node belongs to a “div” node.

This “div” node further belongs to another “a” node.

And so on….

We call this is “path”: …div/div/div/a/div/h5

UNDERSTANDING HTML

You can see that we have various types of nodes, including
“div”, “a”, and “h5”. You may wonder, “what do these types
mean?”

Here, these types are called “tag”. For example, a “figure” tag
is used to mark up a figure in the HTML language.

For detailed information, check here.

https://www.w3schools.com/tags/

UNDERSTANDING HTML
root

body

a

div

h5

Other Layers (Omitted)

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

UNDERSTANDING HTML

This is something like your home address:

We have something like…
Country/Province/City/District/Street/Building/Floor/Room

The path helps us locate nodes and find the content of the
nodes.

UNDERSTANDING HTML

However, unlike your home address, here each node does
not have its name.

For example, we know it is an “h5” node (not a “div” node)
but there may be multiple “h5” nodes.

My building is in a street (not an avenue or road) but there
may be multiple streets here.

UNDERSTANDING HTML

Let’s get all “h5” nodes. This can be done by running this:

nodes <- html_nodes(webpage,xpath = '//h5')

You can see that in total we have 28 “h5” nodes.

print(length(nodes))

UNDERSTANDING HTML

We want to make the path more accurate to pin down to the
“h5” nodes that we are interested in. That is, we want to
remove other unrelated “h5” nodes.

We can do this by putting more restrictions on the path.

UNDERSTANDING HTML

page_text <- html_nodes(webpage,xpath =

'//div[@class="people-info"]/h5')

Here we restrict the parent of the “h5” node must be a “div”
node, and moreover, the parent div node must have a class
which is equal to “people-info”.

UNDERSTANDING HTML

Now, we only have 16 h5 nodes selected. These are actually
all HKU marketing faculties. Let us print their names:

nodes <- html_nodes(webpage,xpath =

'//div[@class="people-info"]/h5')

for (node in nodes)

print(html_text(node))

Exercise

Great! You know have a sense of how to scrape data from the
web. It is very preliminary, and you will need a lot more
exercises. Let us try the following exercise.

Scraping Exercise

In marketing, the most
premier academic journal is
Marketing Science. It covers
the latest, most important
progress in the marketing
community. Let us try to
scrape data from it.

Exercise

Each year, Marketing Science publishes 6 issues. We take its
first issue in 2021 as an example. The URL for the issue is
here:

https://pubsonline.informs.org/toc/mksc/40/1

You can see 10 articles in this issue. We want to download
the information about these 10 articles.

https://pubsonline.informs.org/toc/mksc/40/1

Exercise

Let’s try to scrape the title and author information:

Exercise

First, let us scrape the
titles. We must
understand the
corresponding HTML
code to scrape the data.

Exercise

library(rvest)

url =

"https://pubsonline.informs.org/toc/mksc/40/1"

webpage = read_html(url, encoding = "UTF-8")

nodes <- html_nodes(webpage,xpath =

'//h5[@class="issue-item__title"]/a')

for (node in nodes)

print(html_text(node))

Exercise

Now, we are done!

Exercise Continued…

Now, let us try to scrape the author names from the Marketing
Science website. For example, this article is written by Jia Liu
and Shawndra Hill.

Exercise Continued…

Again, we read the
HTML code to
understand the path and
then decide how to reach
the nodes and scrape
data.

Exercise Continued…

nodes <- html_nodes(webpage,xpath =

'//a[@class="entryAuthor linkable hlFld-

ContribAuthor"]')

print(length(nodes))

for (node in nodes)

print(html_text(node))

Exercise Continued…

Yes, we can now print the authors for all articles.

However, this is another issue: We may want to the authors
for each article, not the authors for all articles. That is, we
want to know that the following paper is written by these
specific two authors, not anyone else.

Exercise Continued…

So, let us try to do the following:

For each article, we first print its title, and then we print it
authors. We want to get the following output:

(Title) Frontiers: Moment Marketing: Measuring Dynamics in
Cross-Channel Ad Effectiveness
(Authors) Jia Liu, Shawndra Hill

Exercise Continued…

The idea is as follows. Each article starts from the same node,
with title and author names being its descendants.

We can first locate the root for the article and then only print
its title and author (not the authors of other articles).

article root

author other nodestitle

Exercise Continued…

Here, each article starts from a same div node with class
“issue-item”. In this sense, we can start from these nodes for
our articles. Then, we search within each of these nodes for
title and authors.

article_nodes <- html_nodes(webpage,xpath =

'//div[@class="issue-item"]')

print(length(article_nodes))

Exercise Continued…

for (article in article_nodes)

{

titles <- html_nodes(article, xpath =

'.//h5[@class="issue-item__title"]/a')

print(html_text(titles[1]))

}

Exercise Continued…

Here, there are two major differences.

First, we start the path from the root of each article (i.e.,
we start from each article instead of the webpage).

Second, we use “.//” instead of “//” in the path. Here, “.//”
means a path starting from the local root instead of the
whole webpage.

Exercise Continued…

for (article in article_nodes)

{ titles <- html_nodes(article, xpath =

'.//h5[@class="issue-item__title"]')

print(html_text(titles[1]))

authors <- html_nodes(article, xpath =

'.//a[@class="entryAuthor linkable hlFld-

ContribAuthor"]')

for (author in authors)

print(html_text(author))}

Exercise #2

Now, let us visit the MIT Open course website here:
https://ocw.mit.edu/courses/most-visited-courses/

https://ocw.mit.edu/courses/most-visited-courses/

Exercise #2

In this exercise, we attempt to scrape the course code, course
name, and course level for each course listed on the website.
For example, the information we are scraping for the first
course is 6.0001, “Introduction to Computer Science and
Programming in Python”, “Undergraduate”.

Try this exercise yourself!

Exercise #2

First, we identify the root of each
individual course. We need to
inspect the HTML code first.

Exercise #2

You can see that each class is represented by a “tr” node.

Interestingly, the 1st, 3rd, 5th … classes have a class
attribute “odd”.

For the 2nd, 4th , 6th … classes, they have a class attribute
“even”.

Exercise #2

You can use the following code to select the “tr” nodes whose
class attribute is either “odd” or “even”:

url = "https://ocw.mit.edu/courses/most-

visited-courses/"

webpage = read_html(url, encoding = "UTF-8")

course_nodes <- html_nodes(webpage,xpath =

'//tr[@class="odd" or @class="even"]')

print(length(course_nodes))

Exercise #2

Then, we need to analyze the course HTML code to understand how we
could extract the course information (e.g., course code and course title).

Exercise #2

You can see that, interestingly, the course code, course title,
and course level are all represented by an “a” node.
Moreover, the share the same “rel” attribute (coursePreview)
and the same “class” attribute (preview).

This means we can extract all information with the same code
(good news)!

Exercise #2

for (course in course_nodes){

info <- html_nodes(course, xpath =

'.//a[@rel="coursePreview"]')

print(html_text(info[1]))

print(html_text(info[2]))

print(html_text(info[3]))

writeLines("")

}

Exercise #2

Note that each course has a link. That is, you can click the
course information and you will be directed to the specific
course’s website. Now, we want to get these links. What
should we do?

Exercise #2

The link information is embedded here. This is, it is in the “href”
attribute of the “a” node, and we need to read the attribute value.

Exercise #2

for (course in course_nodes){

info <- html_nodes(course, xpath =

'.//a[@rel="coursePreview"]')

courselink <- html_attr(info[1], "href")

print(html_text(info[1]))

print(html_text(info[2]))

print(html_text(info[3]))

print(courselink)

writeLines("")}

Exercise #2

You got something like this:

But the real URL is “https://ocw.mit.edu/courses/mathematics/18-06-
linear-algebra-spring-2010/”

Exercise #2

This is because the webpage has its base URL “https://ocw.mit.edu”

You need to add this base to the scraped URL to be able to get the
complete URL of each course website.

Exercise #2

This is because the webpage has its base URL “https://ocw.mit.edu”

You need to add this base to the scraped URL to be able to get the
complete URL of each course website.

Exercise #2

for (course in course_nodes){

info <- html_nodes(course, xpath =

'.//a[@rel="coursePreview"]')

courselink <- html_attr(info[1], "href")

print(html_text(info[1]))

print(html_text(info[2]))

print(html_text(info[3]))

print(paste0("https://ocw.mit.edu", courselink))

1. writeLines("")}

Exercise #2

But why should we care about the link?

The link is super important!

For example, you can get the 20 links on the first page.

Then, using the links, you can next crawl the content of these 20
courses, and so on.

