Social Networks

Lenddo, a Singaporean start-up, helps financial institutions collect users' social network data. But why?

MARKETING SCIENCE

Articles in Advance, pp. 1–25 ISSN 0732-2399 (print) | ISSN 1526-548X (online)

http://dx.doi.org/10.1287/mksc.2015.0949 © 2015 INFORMS

Credit Scoring with Social Network Data

Yanhao Wei

Department of Economics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, yanhao@sas.upenn.edu

Pinar Yildirim, Christophe Van den Bulte

Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104 {pyild@wharton.upenn.edu, vdbulte@wharton.upenn.edu}

Chrysanthos Dellarocas

Information Systems Department, Questrom School of Business, Boston University, Boston, Massachusetts 02215, dell@bu.edu

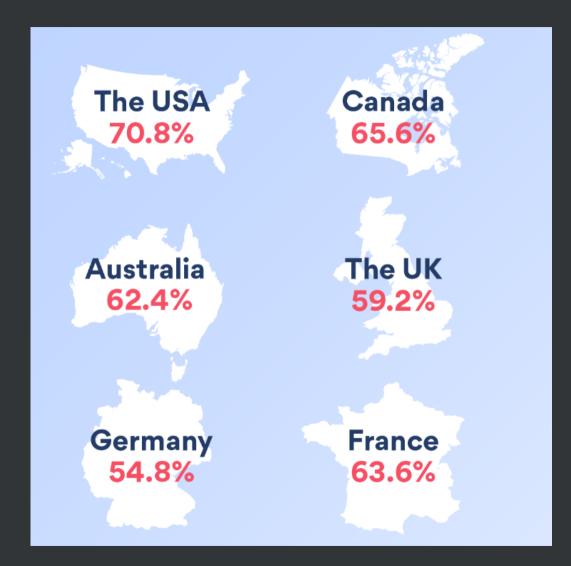
Obesity is an epidemic.

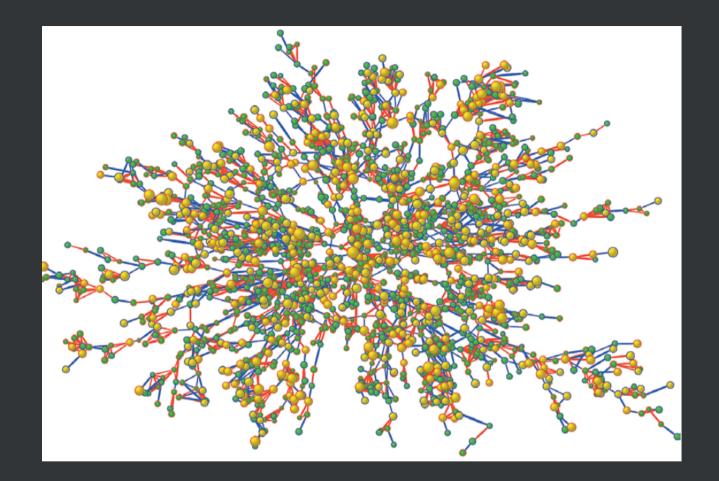
The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

The Spread of Obesity in a Large Social Network over 32 Years

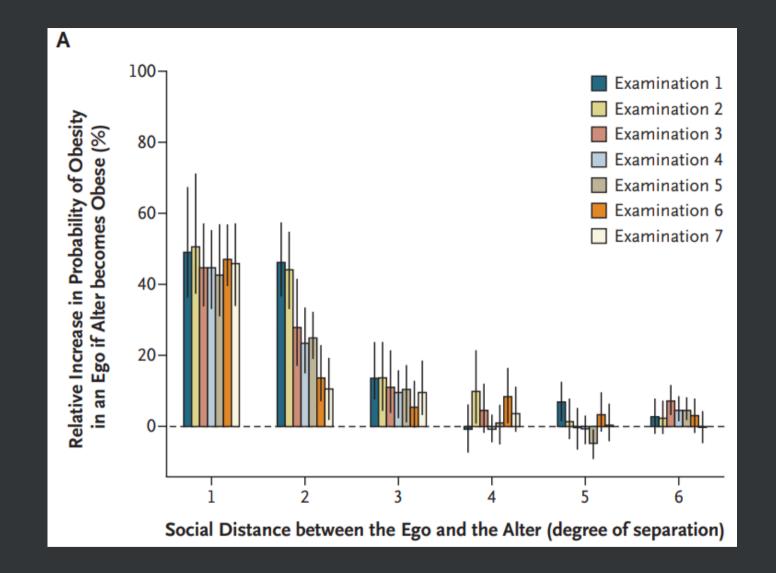
Nicholas A. Christakis, M.D., Ph.D., M.P.H., and James H. Fowler, Ph.D.





Node: individual; edge: connections; size of node: body mass index; yellow: obesity (i.e., BMI > 30.)

https://www.youtube.com/embed/pJfq-o5nZQ4?enablejsapi=1



45%, 25%, and 10%

But why?

#1: Induction

"Hey, let's go and have muffins and beer!" "Comparing with my friends, my weight sounds good."

●CBS NEWS

OPINION

Gaining Weight? Blame Your Friends

The New York Times Magazine

Are Your Friends Making You Fat?

#2: Homophily

I make friends with you because we share the same body size.

#3: Confounding

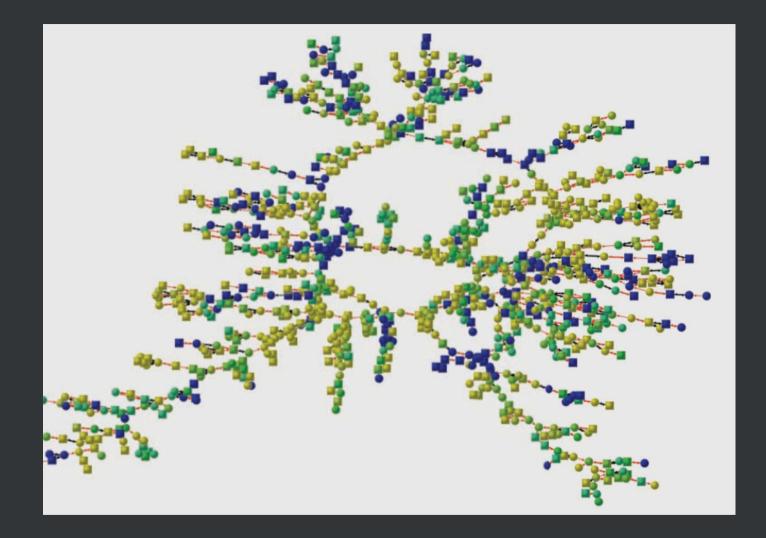
We share a common exposure to something, e.g., we are both visiting the same gym.

RESEARCH

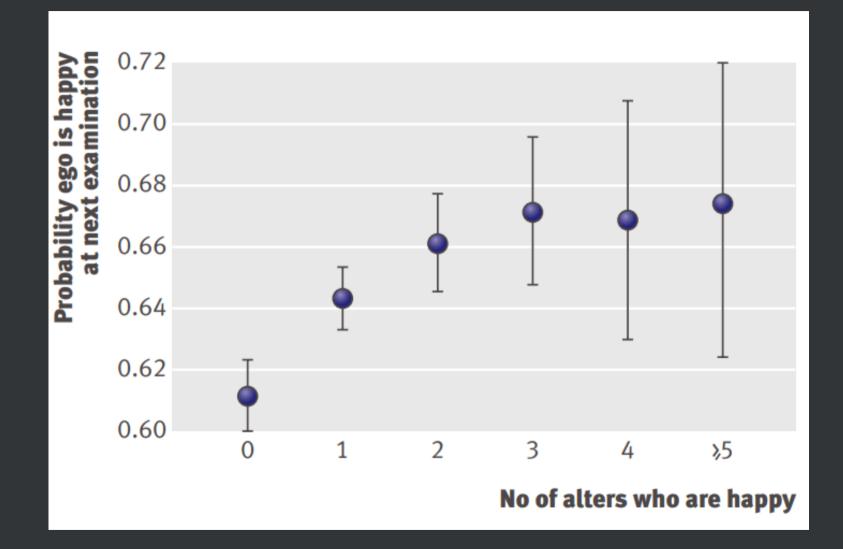
Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study

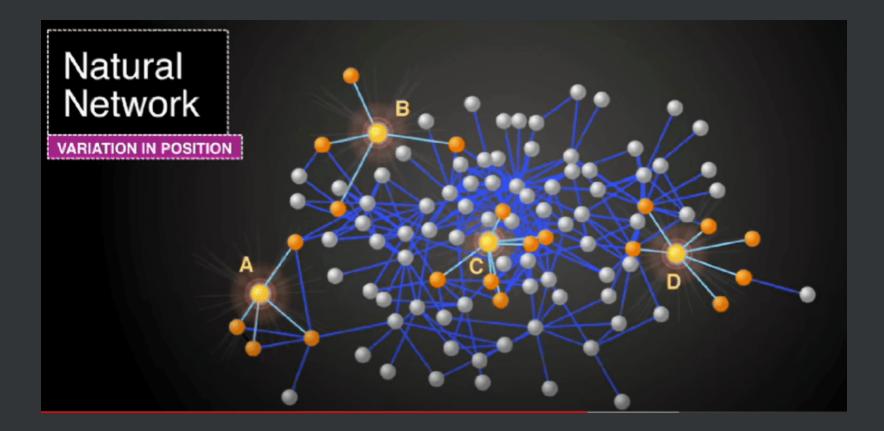
James H Fowler, associate professor,¹ Nicholas A Christakis, professor²

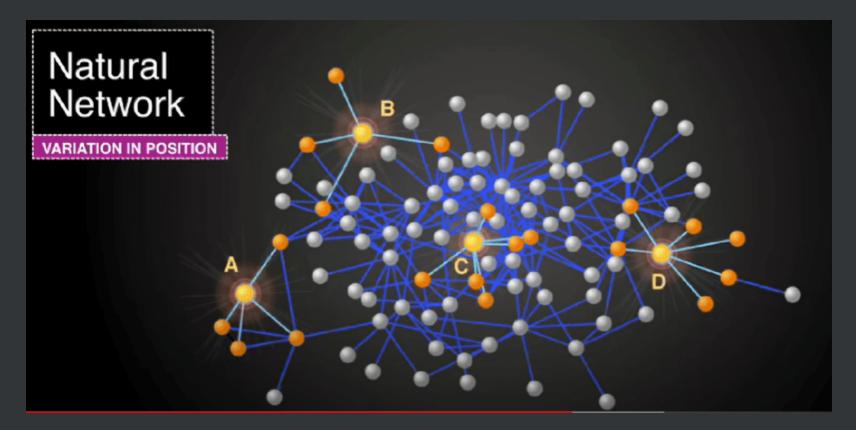
BM



Happiness is contagious: (square: male; circle: female; yellow: happy; blue: unhappy)







If a deadly germ is going to spread in this social network, would you rather be person C or person D?

Network structure makes the difference.

What's the difference?

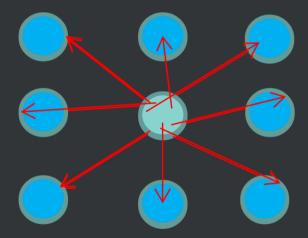
Web 1.0 Expedia Google eBay Amazon.com CNN.com WSJ.com

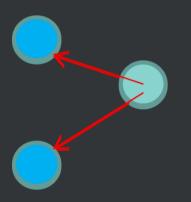
Web 2.0 and beyond

Twitter Snapchat Instagram Pinterest Reddit Wikipedia Facebook

Amplification Ratio

amplification ratio =
$$\frac{\text{friends of fans exposed to}}{\text{fans exposed to}} = \frac{10}{2} = 5$$





Social Network Analysis: Theory

Key Metrics of a Social Network

Individual: Has meaning independently of social network You live in Hong Kong island, HK Connection: You are close friends with 10 people at HKU Whole Network: On average, students know each other within 4 steps Connection can be directed (e.g., follower and followee) or undirected (e.g., classmates)

Nodes and Edges

Vertex / Node: an end point, often a person Edge / Link: What connects up the nodes, e.g., a relationship Maximum number of edges in group of size N(N - 1)/2.

- Where everyone connects to everyone else
- If undirected (my friends also have me as a friend)

Who is well-connected?

Degree (centrality): The number of linkages you have.

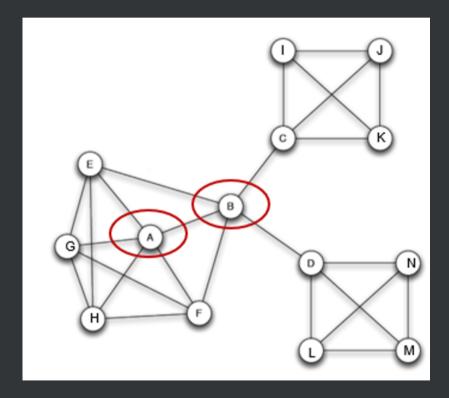
- "In-degree", e.g., someone that follows me.
- "Out-degree", e.g., I follow someone else.

Edge Weight

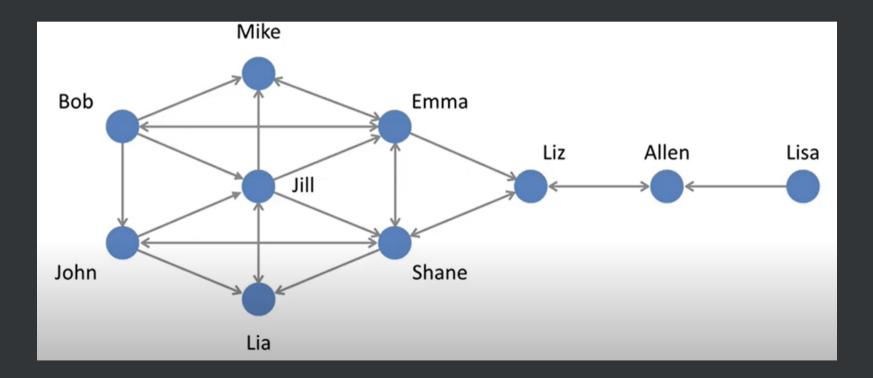
- Sometimes edge can also carry weight
- Can capture how deep the relationships are
- E.g., frequency of interactions between two nodes.

How to determine important persons in a social network?

Who is more important? Why?



Who is more important? Why?



https://www.youtube.com/embed/0aqvVbTyEmc?enablejsapi=1

Closeness Centrality

Only applies to a fully connected network (i.e., a path exists between any pair of nodes).

$$ext{closeness centrality}(x) = rac{N-1}{\sum_y d(x,y)}$$

N: number of nodes in the network d(x, y): the shortest distance between nodes x and y.

Betweenness Centrality

Applies to disconnected networks as well.

$$ext{betweenness centrality}(x) = \sum_{y,z} rac{\sigma_{yz}(x)}{\sigma_{yz}}$$

 σ_{yz} is the total number of shortest paths from y to z. $\sigma_{yz}(x)$ is the number of shortest paths from y to z that go through x.

Strong ties vs. Weak Ties

Strong Ties vs. Weak Ties

A, B and C are currently iPhone users.

C has recently switched to Android system, and B still uses iPhone.

A is more likely to switch or stay, follow your friend or acquaintance?

Strength of strong ties.

Strong Ties vs. Weak Ties

A has recently changed job.

Is A more likely getting a lead from friend C or acquaintance B?

See a video here.

Strong Ties vs. Weak Ties

Although strong ties generally exert more normative influence, weak ties often have more informational influence.

Why?

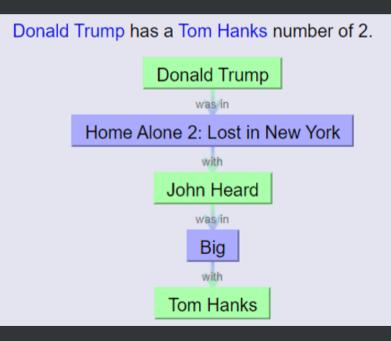
Because different social circles have different info, i.e., you probably know what your good friends know. Most jobs are found through weak connections.

Degrees of Separation

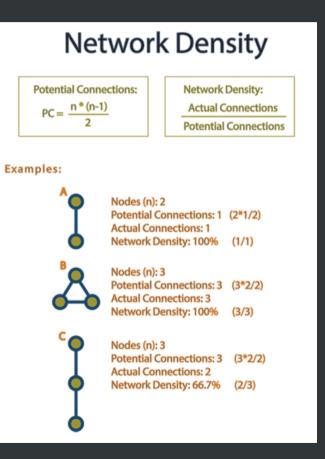
Path of how many people are needed to connect people up Technical name: Geodesic distance

6 is the magical number: Kevin Bacon game (Link)

Don't fixate on 6! It does not apply to all networks!



The Density of a Social Network



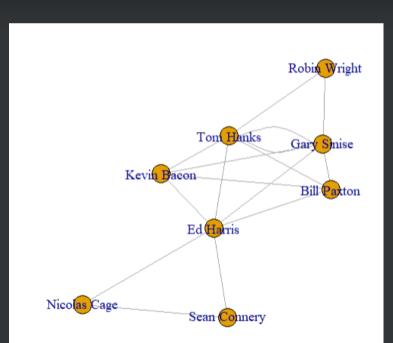
Network Analysis with R

Loading the Network Data

- 1 library(igraph)
- 2 library(readr)
- 3 actors <- read_csv("https://ximarketing.github.io/class/DM//Actors.csv")</pre>
- 4 movies <- read_csv("https://ximarketing.github.io/class/DM/Movies.csv")</pre>
- 5 head(actors)
- 6 head(movies)

Constructing the Network

- 1 actorNetwork <- graph_from_data_frame(d=movies, vertices=actors, directed=F)</pre>
- 2 plot(actorNetwork)



Coloring Your Network

- 1 V(actorNetwork)\$color <- ifelse(V(actorNetwork)\$Gender == "Male", "lightblue", "pink")
- 2 plot(actorNetwork)
- 3 legend("topleft", c("Male", "Female"), pch=21,
- 4 col="#777777", pt.bg=c("lightblue","pink"), pt.cex=2, cex=.8)

Degree Centrality

•••

1 degree(actorNetwork, mode="all")

Closeness Centrality

•••

1 closeness(actorNetwork, mode="all", weights=NA, normalized=T)

Betweenness Centrality

•••

1 betweenness(actorNetwork, directed=F, weights=NA, normalized = T)

Density of Network

•••

1 edge_density(actorNetwork)

Exercise

- 1 actors < read_csv("https://ximarketing.github.io/class/DM//ActorsExercise.csv")</pre>
 - 2 movies <read_csv("https://ximarketing.github.io/class/DM/MoviesExercise.csv")</pre>

Exercise

1 cities <-

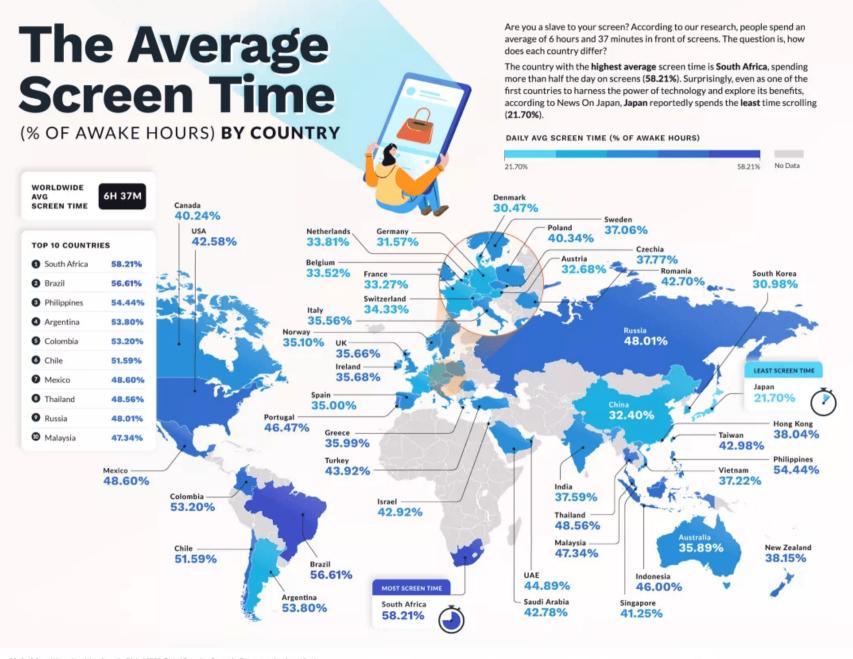
read_csv("https://ximarketing.github.io/class/DM/DirectedNodes.csv")

- 2 routes <read_csv("https://ximarketing.github.io/class/DM/DirectedEdges.csv")</pre>
- 3 flightNetwork <- graph_from_data_frame(d=routes, vertices=cities, directed=T)
- 4 plot(flightNetwork)
- 5 degree(flightNetwork, mode="in")
- 6 degree(flightNetwork, mode="out")

Mobile

4.5 billion vs. 6.1 billion

Excluding your sleep, what is the percentage of time that you spend on screens?



Methodology: We analyzed data from the Digital 2023: Global Overview Report by Datareportal and combined it with sleep patterns data from SleepCycle.com to calculate the % of awake hours each country [internet users aged 16-64) spends looking at screens for each category.

This image is licensed under the Creative Commons Attribution-Share Alike 4.0 International License - www.creativecommons.org/licenses/by-sa/4.0 How is mobile different from PC? What new marketing opportunities are brought by mobile?

- Omnipresence: Always carried and always on.
- Reduced targeting errors: Unlike cookies, phone number and device ID cannot be deleted; mobile phones are usually not shared among households.
- The story of pies.

In United States, according to supermarket sales, among all 30-centimeter pies, apple pies are most popular.

However, among 11-centimeter pies, apple pies only rank the 5th. What makes the difference?

- Built-in payment system: Easily purchase at offline stores
- Location awareness: Location provides both proximity data and contextual information.

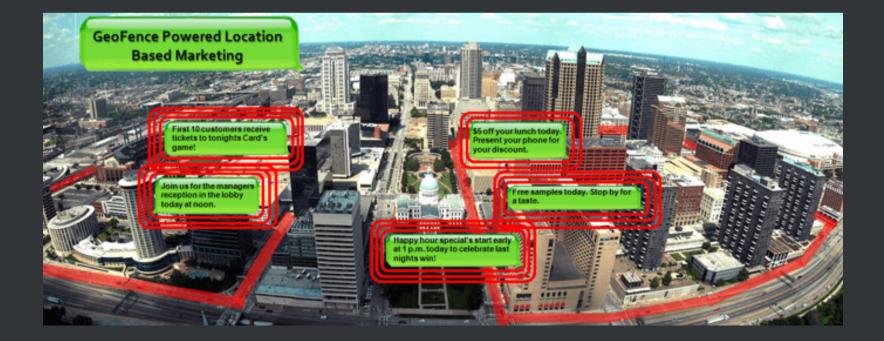
Location Based Targeting

Consumers search with their location and proximity in mind

- 88% of consumers conduct local searches on smartphones. Local searchers are more likely to take actions
 - 50% of consumers who conducted a local search on their smartphone visited a store within a day.
 - 18% of local searches on smartphone lead to a purchase within a day vs. 7% of non-local searches.

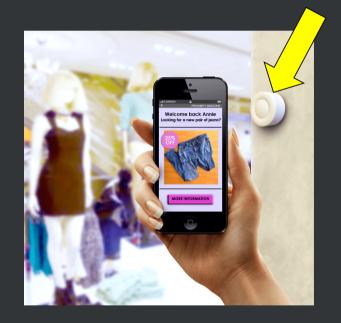
Geo-fencing

Geofencing is a location-based service that sends promotional messages to smartphone users who enter a defined geographic area such as a hotel, a mall, or a conference center.



Beacons

Beacons are small, often inexpensive devices that use Bluetooth to enable more accurate location within a narrow range than GPS, cell tower triangulation and Wi-Fi proximity.



Traditional Location Targeting Mobile Targeting Mobile Targeting Works: Unknown Works: Iowa City, IA Works: Midtown Manhattan Lives: Unknown Lives: Iowa City, IA Lives: Garden City, NY Shops at: Costco, Macy's Shops: Unknown Shops: McDonald's, Wal-Mart Age: 35-44 Age: Unknown Age: 25-29 Income: \$150k+ Income: Unknown Income: \$50-75k+ Travels for business Interests: Unknown Interests: Concerts

https://www.youtube.com/embed/nZ532wkhHYs?enablejsapi=1



- Personalize user experience
- Send mobile coupons
- Have high targetability such as demographics, timing, etc
- Be non-intrusive by giving users opt-out options
- Link with loyalty program