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Hospital Choice

You are choosing between two hospitals:

« Hospital A: Among each 1,000 patients, 900 survived.
 Hospital B: Among each 1,000 patients, 800 survived.

Which hospital are you going to choose?
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Fund Managers

Let us consider two fund managers.

e Fund manager A: Annualized rate of return 12%
e Fund manager B: Annualized rate of return 10%

Under what conditions should you choose manager A?
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Lesson Learned #{i)l| 5 &

If you group your consumers, you may find something
different!
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What is market segmentation? {4 /& Hi37 4l 4 ?

Market segmentation is the process of dividing consumers
into groups with common characteristics and respond
similarly to your marketing actions.
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=@®| | Harvard Many new products fail because their creators use an ineffective market

s Y Business segmentation mechanism, according to HBS professor Clayton Christensen. It's

: time for companies to look at products the way customers do: as a way to get a job
School done

&
&
&

Market segmentation allows you to target the right people
with the right messaging at the right time. Segmentation
enables you to learn more about your audience so you can
better tailor your messaging to their preferences and needs.
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Examples of market segmentation: Coca-Cola
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drinks
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Examples of market segmentation: Xiaomi
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BlackShark
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Market segmentation for Airlines:

Urgent travellers: Consumers have an urgent need to travel
that is usually unexpected.

Business travellers: Consumers who visit different places
for the needs of business.

Budget conscious: Holidaymakers who are price-sensitive.
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Clustering
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Imaging that you have designing T-shirt for consumers. You
are looking at your consumers' weight and height, which
would allow you to decide how many sizes to offer and
which size fits a particular individual. Instead of classifying
your consumers arbitrarily, you can use data to perform the
task more precisely.
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SIZE SELECTION. Rf3ikiFEx
ARRIRAIRERE, SXEFAEN—3, SRERAEX—D

H((E)‘ 95 105 115 125 135145 155 165 175 185 195 205

165
170 S
175 .

180 | XL
185 | | XXL

190 | XXXL
195 \ XXXXL

Why offer 7 sizes? Are these sizes optimal?
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How are these locations decided?
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Here is consumer data. How would you classify them into groups?
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Original unclustered data
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Original unclustered data
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Clustered data
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The K-means Algorithm

The K-means algorithm an EM (expectation-maximization)
algorithm commonly used for classifying objects.

Input: A number of observations (X7, Xs, ..., X,) and k, the
number of groups to be classified

Output: £ mutually exclusive and collectively exhaustive
groups containing all observations
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Classify the following observations into k = 2 groups:

R LW 2R k=2 4
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Step 1: Randomly choose k = 2 "centers" for your clusters.
WL BHLHEE b = 2 MRAH D




Step 2: Assign each observation to the nearest center.
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Step 3: Update the location the centers, which is given by the average
location of all points in the corresponding cluster.
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Repeat the above process again and again until the
centers no longer change.
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The K-means algorithm:

1. Select cluster centers ¢y, ..., c, € R? arbitrarily.

2. Assign every xz € X to the cluster C; whose cluster center ¢; is closest to it, i.e., ||z — ¢;|| <
|z — ¢;|| for all j # .

3. Set ¢; = ]Ci,[ > zec; T

4. If clusters or centers have changed, goto 2. Otherwise, terminate.
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The K-means algorithm in R: ¥£ R H1 528 K-33{E A

(cluster)
(factoextra)

mydata <- read csv("https://ximarketing.github.io/data/clustering.csv")
head (mydata)

X Y
0.627 0.474
0.563 0.714
0.296 0.583
0.816 0.122
0.345 0.662
0.234 0.436

36



0.8

0.6

0.4

0.2

0.0

-0.2

Visualizing the data: ] #i{b5( &

1 plot(mydata)
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1 result <- kmeans(mydata, centers = 3, nstart = 25)

2 result

Here, centers = 3 means we want to classify the
observations into three clusters. nstart = 25
means we randomly run the algorithm 25 times
and pick the best results.

Cluster means:

X Y
1 0.8147681 06048477 These are the centers of the
2 0.3243930 0.4611514 three clusters.
3 0.7128718 0.1029810
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1 result <- kmeans(mydata, centers = 3, nstart = 25)

2 result

XH, centers =3 ZBRE BN 1A E B ME{H 2R
FEAEK, nstart = 25 FERFAIBEN 517 E 8
250K, FikBERAESE R

Cluster means:

X YRR =ARERM T

1 0.8147681 0.6048477 =BT
2 0.3243930 0.4611514
3 0.7128718 0.1029810
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Cluster plot

Lastly, we visualize the result:

weJa . BN ERET L

1 fviz cluster(result, data = mydata)

cluster

1
NE
3
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How many groups to have?

There are several measures available, and one simple
measure is the

between group sum of error

performance =
total sum of error

The larger the value is, the better the performance is.
You can think it as

1 — performance = total distance from points to the nearest center
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between group sum of error

performance =
total sum of error

ERR, VEREBIF . VRW] LR AR A -

1 — performance = total distance from points to the nearest center
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Cluster plot

2, performance is 41.9%

2 BF, PEREN 41.9%
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When k = 3, performance is 78.0%
k=3 W, PEEEN 78.0%

Cluster plot
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Cluster plot

4, performance is 81.4%
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Cluster plot
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5, performance is 84.3%

5 B, hAEDY 84.3%

cluster
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number of clusters performance
2 41.9%
3 78.0%
4 81.4%
5 84.3%

While having more clusters always improve your

performance, the improvement is low after k = 3. In this

regard, having three clusters is considered enough.
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I = 1 R
2 41.9%
3 78.0%
4 81.4%
5 84.3%

BRNMR ARG B LR SRR, BrE k=3 Z)5, A
HISRTHIE BRI e FERXPMEIL T, =AY N R
HY o
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The complete code is here.

(cluster)
(factoextra)

mydata <- read csv("https://ximarketing.github.io/data/clustering.csv")

result <- kmeans(mydata, centers = 3, nstart = 25)
result

fviz cluster(result, data = mydata)
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Latent Class Analysis
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Suppose that you have a number of users, and you
observe the behavior of each user, which is a binary
variable. Here is an example:

For each consumer of financial institution, you observe:

1. Whether the consumer applied for a credit card.
2. Whether the consumer applied for a loan.
3. Whether the consumer defaulted in the past.

4. Whether the consumer transacted during the past week.

5. Whether the consumer issued a complaint before.

And so on... For each question, the answer is Yes or No.
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Now, we want to classity consumers into groups.

BUE, N1 2R IH S E 0 2R A R 2
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What does the word “latent” stand for?

Latent means hidden. In our context, it means there are
hidden classes of consumers but we do not know what they
are. On they other hand, we can also group individuals
based on their observed characteristics such as gender, age
group, which are not “latent.”
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Example 1: In a survey, respondents answered questions regarding
their attitudes regarding social issues (e.g., Do you support capital
punishment? Do you think the minimum wage should be
increased?). Based on their answers, you can classify them into
groups such as left-wing, right-wing, and central.

A1 FETUEET, ZU5E B TR TR T AL A AR
ASFER R (N SR e A F AR 9% b %1%
e ) o RIEMAIINES, & LM LER. A
BRI e B YR <5 251 o
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Example 2: A streaming APP observes the videos that consumers
watch online, and classify consumers into groups based on their
tastes. You will have groups that enjoy watching action movies,
romantic movies, cartoons, etc.

A 2 — TR DL P LR S B AESOE FIPU, AR
AT E I H S K. RS AEVMESIER . Z
& A~ Bl F 25 A 4L B R
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Statistical Background (optional).

Suppose that there are two questions, A and B. Then, for an
individual, the likelihood that the answers are X4 and Xp is given

by
Z Pr[Class j|] x Pr[X 4|Class j| x Pr[Xg|Class j]

every class j

Our goal is to find out the following values to maximize the
likelihood:

Pr|Class j|, Pr[X4 = Yes|Class j], Pr[Xp = Yes|Class j].
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Z Pr[Class j] X Pr[X 4|Class j] x Pr[Xp|Class j]

every class j

FATHY B2 LU E, Pl R etk

Pr[Class j|, Pr| X4 = Yes|Class j|, Pr[Xp = Yes|Class j].
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Statistical Background (optional).

How to find out these values? Typically, this is done by using the
expectation-maximization (EM) method, which is beyond the
scope of this class. However, if you are interested, you can find out
the original paper on this topic:

Dempster, A.P., Laird, N.M. and Rubin, D.B., 1977. Maximum
likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B, 39(1), 1-22.
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Dempster, A.P., Laird, N.M. and Rubin, D.B., 1977. Maximum
likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B, 39(1), 1-22.
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We ask whether a student likes the following subjects: English,
History, Art, Mathematics, Physics, and Biology. For each subject,
the answer is Yes or No.

When you run LCA in R, the class should be indicated as 2 or 1.
So, we use 2 to denote Yes (2 = Yes) and 1 to denote No (1 = No).
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The data is as follows. 2241

math physics biology

art

english history

D

10
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First, we load data from the internet.

(readr)
(poOLCA)

mydata <- read csv("https://ximarketing.github.io/data/LCA.csv")
head (mydata)

Here, poLCA is the most commonly used R
package for LCA.

ID english history art math physics biology

(o) T, QN =S U I Ny =
NR R NR R
RFRNR R
RNNR R R
MR MNMER
R R RNREN
NRRNNR R
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BHE, FATA TR 2 E .

(readr)
(poOLCA)

mydata <- read csv("https://ximarketing.github.io/data/LCA.csv")
head (mydata)

FEXH, poLCA a5 Y R G THETER
Aot (LCA)

ID english history art math physics biology

(o) T, QN =S U I Ny =
NR R NR R
RFRNR R
RNNR R R
MR MNMER
R R RNREN
NRRNNR R
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1 f <- cbind(english, history, art, math, physics, biology)-~1

In the above code, we use the cbind (column bind) function
to merge the columns that we want to analyze. ~1 refers to

the simple LCA model (there are complex versions of
LCA).

/e ERAHDH . B cbind (BU45) HERAIERA]
HEAMTI] . ~1 $5 R LCA BUH (A8 2
) LCA) &
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1 set.seed(5620)

2 LCA <- poLCA(f, data=mydata, nclass=4)

Lastly, we run LCA model with 4 latent classes.
The complete codes are as follows.

(readr)
(poLCA)

mydata <- read csv("https://ximarketing.github.io/data/LCA.csv")
head (mydata)

f <- cbind(english, history, art, math, physics, biology)-1
set.seed(5620)

LCA <- poLCA(f, data=mydata, nclass=4)
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1 set.seed(5620)

2 LCA <- poLCA(f, data=mydata, nclass=4)

WeF . A HETEEAT 4 AMBTER BN LCA
R, SEMEMIRTLTF

(readr)
(poLCA)

mydata <- read csv("https://ximarketing.github.io/data/LCA.csv")
head (mydata)

f <- cbind(english, history, art, math, physics, biology)-1
set.seed(5620)

LCA <- poLCA(f, data=mydata, nclass=4)
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$english

Ppr(1l) Pr(2)
class 1: 0.3416 0.6584
class 2: 0.8429 0.1571
class 3: 0.1409 0.8591
class 4: 0.6980 0.3020

Here, each class represents one segment.

With probability 65.8%, a person in class 1 likes English.
With probability 15.7%, a person in class 2 likes English.
With probability 85.9%, a person in class 3 likes English.
With probability 30.2%, a person in class 4 likes English.
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$english

class
class
class
class

CTERRI 1
X2
Y EL
R4

AW

pr(l) pr(2)

0.3416 0.6584
0.8429 0.1571
0.1409 0.8591
0.6980 0.3020

EXE, FARHPUCE 7

4J 0 O 4

, A 65.8% MIMEE— 1N NEIIEIE .
, A 15.7% BIMERE—N NEIRIEE .
, A 85.9% MIMERE— N NEWKIEIE .
, A 30.2% BIBEERE—A NFIKIEIE
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$english $art $physics
Pr(1) Pr(2) Pr(1) Pr(2) Pr(1) Pr(2)

class 1: 0.3416 0.6584 class 1: 0.2617 0.7383 class 1: 0.8498 0.1502
class 2: 0.8429 0.1571 class 2: 0.9022 0.0978 class 2: 0.2735 0.7265
class 3: 0.1409 0.8591 class 3: 0.1612 0.8388 class 3: 0.2312 0.7688
class 4: 0.6980 0.3020 class 4: 0.7949 0.2051 class 4: 0.9952 0.0048
$history $math $biology

Pr(1) Pr(2) Pr(1) Pr(2) Pr(1) Pr(2)
class 1: 0.2684 0.7316 class 1: 0.7348 0.2652 class 1: 0.8868 0.1132
class 2: 0.8344 0.1656 class 2: 0.3489 0.6511 class 2: 0.2112 0.7888
class 3: 0.2345 0.7655 class 3: 0.2235 0.7765 class 3: 0.1678 0.8322
class 4: 0.9289 0.0711 class 4: 0.8068 0.1932 class 4: 0.8871 0.1129

Class 1: Like art/humanities but hate science ("X £}l %I")
Class 2: Like science but hate art/humanities (“FHf}#1”)
Class 3: Like all subjects ("%-%j5")

Class 4: Hate every subject (“2#i&")



We can further visualize the results:

1 plot(LCA)
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1 predicted class <- cbind(mydata, "Predicted LC" = LCA$predclass)

2 head(predicted class)

Next, we want to the type (class) of each
individual in the dataset. We can run the above
code to see the results.

ID english history art math physics biology Predicted LC

1 1 1 1 1 2 2 1 2
2 2 1 1 1 1 1 1 4
3 3 2 1 1 2 2 2 2
4 4 1 2 2 2 1 2 3
5 5 1 1 2 1 1 1 4
6 6 2 1 1 2 1 2 2
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1 predicted class <- cbind(mydata, "Predicted LC" = LCA$predclass)

2 head(predicted class)

ok, BATEEEE LIRS BRI 285
(KAL) o 1] LlizfT B Rk EE 4521

ID english history art math physics biology Predicted LC

1 1 1 1 1 2 2 1 2
2 2 1 1 1 1 1 1 4
3 3 2 1 1 2 2 2 2
4 4 1 2 2 2 1 2 3
5 5 1 1 2 1 1 1 4
6 6 2 1 1 2 1 2 2
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Question: How many classes should be included?
Ll VAT ThE 2SIk
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Classes 2 3 4 5
AIC 15,559 14,859 14,732 14,731
BIC 15,632 14,971 14,883 14,921

Two most commonly used criteria are BIC and AIC, while BIC is

more popular (Nylund et al. concluded that BIC tends to perform

better than AIC especially when N is large). They two measures

are largely aligned, and we choose the number of classes that

minimize their BIC/AIC.
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R %K 2 3 4 5
AIC 15,559 14,859 14,732 14,731
BIC 15,632 14,971 14,883 14,921

W B PR RS BIC A1 AIC, o BIC B 4iiifT
N CYNBINE S )
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