
Web Scraping
Gathering Data from the Web

Web Scraping!

You may want to…
download all videos from a website;
download all news articles from a media platform;
download all academic papers from a journal;
download all tweets/weibo of a specific person.

You may need to spend days and nights downloading these
data manually, and you can easily make a lot of mistakes.

Web Scraping!

In today’s class, we are going to learn about webscraping.
In Chinese, it is called 网络爬虫.

What is webscraping?
Using tools to gather data you can see on a webpage.
Almost anything you see on a website can be scraped.

It can be done with python, R,… We are doing it on R.

What is Webscraping?

https://www.youtube.com/watch?v=Ct8Gxo8StBU

Learning about HTML

HTML: HyperText Markup Language.

Websites are written on the HTML language.

Webscraping is based on reading and interpreting the HTML
of a webpage.

But how to find the HTML of a webpage?

Learning about HTML

Please use Chrome as your browser.

If you are not using Chrome, please download and install one
now.

Learning about HTML

The data you want to scrape appears in certain place of the
HTML. For example, suppose that you want to scrape data
from the HKU marketing faculty webpage:

https://www.fbe.hku.hk/people/faculty?pg=1&staff_type=faculty&subject_area=marketing&track=all

Learning about HTML

You can find the name and images of the professors from the
HTML file:

Learning about HTML

For example, it provides you with the link to their profile
photos:

https://www.fbe.hku.hk/wp-content/uploads/fly-images/11554/FBE_0712_web--scaled-800x800-ct.jpg

Webscraping

Suppose that you want to download the names of each
individual marketing faculty, what should you do?

First, you need to get the HTML for the webpage.

Second, you need to analyze the HTML to get the desired
information --- this is much more difficult.

Webscraping

install.packages("rvest")

library(rvest)

url =

"https://www.fbe.hku.hk/people/faculty?pg=1&s

taff_type=faculty&subject_area=marketing&trac

k=all"

webpage = read_html(url, encoding = "UTF-8")

print(webpage)

Webscraping

Now, you get the HTML source file here. The next thing you
need to do it to understand the HTML file, which is very
challenging.

Webscraping

To better understand the HTML code, you are strongly
recommended to use Chrome as your browser.

Chrome allows you to check the HTML code in a convenient
matter.

Check HTML with Chrome

Open the webpage in your
Chrome browser.

Click the upper right Chome
setting button of your browser
and you will be directed here.

Check HTML with Chrome

Choose “More tools”…

Choose “Developer tools”…

Check HTML with Chrome

Click the button and you
will get to “select an element
in the page to inspect it”.

Alternatively, use “Ctrl + Shift
+ C”

Check HTML with Chrome

Take Prof. Dang’s information
as an example.

You can see her name appears
here in the HTML code.

But what does this mean?

UNDERSTANDING HTML

Here, the name information is within an “div” node.

And this node belongs to a “div” node.

This “div” node further belongs to another “a” node.

And so on….

We call this is “path”: …div/div/div/a/div/div

UNDERSTANDING HTML

You can see that we have various types of nodes, including
“div”, “a”, and “img”. You may wonder, “what do these
types mean?”

Here, these types are called “tag”. For example, an “img” tag
is used to mark up an image in the HTML language.

For detailed information, check here.

https://www.w3schools.com/tags/

UNDERSTANDING HTML
root

body

a

div

div

Other Layers (Omitted)

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

other nodes

UNDERSTANDING HTML

This is something like your home address:

We have something like…
Country/Province/City/District/Street/Building/Floor/Room

The path helps us locate nodes and find the content of the
nodes.

UNDERSTANDING HTML

However, unlike your home address, here each node does
not have its name.

For example, we know it is an “div” node (not an “a” node)
but there may be multiple “div” nodes.

My building is in a street (not an avenue or road) but there
may be multiple streets here.

UNDERSTANDING HTML

Let’s get all “h5” nodes. This can be done by running this:

nodes <- html_nodes(webpage,xpath = '//div')

You can see that in total we have 274 “div” nodes.

print(length(nodes))

UNDERSTANDING HTML

We want to make the path more accurate to pin down to the
“div” nodes that we are interested in. That is, we want to
remove other unrelated “div” nodes.

We can do this by putting more restrictions on the path.

UNDERSTANDING HTML

Tags, Attributes and Elements

https://www.youtube.com/watch?v=vNOyRZIkC7o

UNDERSTANDING HTML

nodes <- html_nodes(webpage,xpath =

'//div/div')

Here we restrict the parent of the “div” node must also be a
“div” node. Now, we have 219 nodes --- still too many
unrelated nodes.

UNDERSTANDING HTML

nodes <- html_nodes(webpage,xpath =

'//div[@class="people-info"]/div')

Here we restrict the parent of the “div” node must also be a
“div” node. Moreover, the its parent node must have a class
attribute will is called “people-info.”

UNDERSTANDING HTML

Now, we only have 15 div nodes selected. These are actually
all HKU marketing faculties. Let us print their names:

nodes <- html_nodes(webpage,xpath =

'//div[@class="people-info"]/div')

for (node in nodes)

print(html_text(node))

UNDERSTANDING HTML

You can also use other refinement to select the nodes that you
are looking for. For example, the following codes work as
well:

nodes <- html_nodes(webpage,xpath =

'//div[@class="h5"]')

for (node in nodes)

print(html_text(node))

Exercise

Great! You know have a sense of how to scrape data from the
web. It is very preliminary, and you will need a lot more
exercises. Let us try the following exercise.

Scraping Exercise

In marketing, the most
premier academic journal is
Marketing Science. It covers
the latest, most important
progress in the marketing
community. Let us try to
scrape data from it.

Exercise

Each year, Marketing Science publishes 6 issues. We take its
first issue in 2021 as an example. The URL for the issue is
here:

https://pubsonline.informs.org/toc/mksc/40/1

You can see 10 articles in this issue. We want to download
the information about these 10 articles.

https://pubsonline.informs.org/toc/mksc/40/1

Exercise

Let’s try to scrape the title information:

Exercise

First, let us scrape the
titles. We must
understand the
corresponding HTML
code to scrape the data.

Exercise

library(rvest)

url =

"https://pubsonline.informs.org/toc/mksc/40/1"

webpage = read_html(url, encoding = "UTF-8")

nodes <- html_nodes(webpage,xpath =

'//h5[@class="issue-item__title"]/a')

for (node in nodes)

print(html_text(node))

Exercise

Now, we are done!

Exercise #2

Now, let us visit the MIT Open course website here:
https://ocw.mit.edu/courses/most-visited-courses/

https://ocw.mit.edu/courses/most-visited-courses/

Exercise #2

In this exercise, we attempt to scrape the course code, course
name, and course level for each course listed on the website.
For example, the information we are scraping for the first
course is 6.0001, “Introduction to Computer Science and
Programming in Python”, “Undergraduate”.

Try this exercise yourself!

Exercise #2

First, we identify the root of each
individual course. We need to
inspect the HTML code first.

Exercise #2

You can see that each class is represented by a “tr” node.

Interestingly, the 1st, 3rd, 5th … classes have a class
attribute “odd”.

For the 2nd, 4th , 6th … classes, they have a class attribute
“even”.

Exercise #2

Then, we need to analyze the course HTML code to understand how we
could extract the course information (e.g., course code and course title).

Exercise #2

You can see that, interestingly, the course code, course title,
and course level are all represented by an “a” node.
Moreover, they share the same “rel” attribute
(coursePreview) and the same “class” attribute (preview).

This means we can extract all information with the same code
(good news)!

Exercise #2

You can use the following code to select the “tr” nodes whose
class attribute is either “odd” or “even”:

url = "https://ocw.mit.edu/courses/most-

visited-courses/"

webpage = read_html(url, encoding = "UTF-8")

course_nodes <- html_nodes(webpage,xpath =

'//tr[@class="odd" or @class="even"]/td/a')

for (node in course_nodes)

print(html_text(node))

Downloading Images

Previously, we have discussed how to scrape text information from
a website using a web scraper.

Now, let us consider scraping images from the web.

Scraping Images

Let us go back to the HKU marketing faculty webpage:

https://www.fbe.hku.hk/people/faculty?pg=1&staff_type=faculty&subject_area=marketing&track=all

Scraping Images

You can find a link to each photo (in “src” or ”data-src”
attribute):

Scraping Images

If you get the link, you will have access to the photo:

https://www.hkubs.hku.hk/wp-content/uploads/fly-
images/52612/CAO-Jingcun_web-scaled-800x800-ct.jpg

So, our first step to get the link information.

https://www.hkubs.hku.hk/wp-content/uploads/fly-images/52612/CAO-Jingcun_web-scaled-800x800-ct.jpg

Scraping Images

url =

"https://www.fbe.hku.hk/people/faculty?pg=1&

staff_type=faculty&subject_area=marketing&tr

ack=all"

webpage = read_html(url, encoding = "UTF-8")

image_nodes <- html_nodes(webpage,xpath =

'//div/a/img[@width="800"]')

print(length(image_nodes))

Scraping Images

But that’s not enough. We not only want to get the nodes, but
also need the link to each of the nodes. The link appears in
the “src” or “data-src” attribute.

Scraping Images

But that’s not enough. We not only want to get the nodes, but
also need the link to each of the nodes. The link appears in
the “src” or “data-src” attribute.

image_nodes <- html_nodes(webpage,xpath =

'//div/a/img[@width="800"]')

for (image in image_nodes)

{

photourl <- html_attr(image, "data-src")

print(photourl)

}

Downloading Images

number = 1

for (image in image_nodes)

{

photourl <- html_attr(image, "data-src")

print(photourl)

download.file(photourl,

paste0(toString(number),'_HKU_Photo.jpg'),

mode = 'wb')

number = number + 1

}

Static vs. Dynamic Websites

Dynamic Websites

What we learned in today’s class works well for static
websites. But it does not work equally well on dynamic
websites. If you want to scrape data from a dynamic website,
you may need to use some more advanced tools.

Dynamic Websites

If you want to scrape data from a dynamic website, there is a
tool called “selenium”. We also have a packaged called
“RSelenium” in R.

The selenium tool allows your scraper to visit a webpage like
a human-being. That is, if you write a scraper with selenium,
your scraper will also be able to scroll down your pages, click
buttons, enter your password, etc.

Dynamic Websites

For example, you can also write a program to log in to the
12306 (China railway) website to book a rail ticket for you
(i.e., 抢票).

You can also write a program to log in to your Moodle
account first and then scrape data from the website.

