
Text Mining
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The DAP Platform
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In January, we will use an online platform to complete our
second data project. Please first sign up an account here:
 
DAP platform: https://acrc.internad.hk/
Register with your HKU email and your real name
 
Also, you need to add our coursepack here:
https://acrc.internad.hk/enrol/1000025503
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Text data is one of the most commonly used types of
unstructured data.
 
Text data is typically generated by users themselves.
Online reviews, movie critics, Tweets, SMS, WhatsApp and
WeChat messages, Facebook messages…

Text Data
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Yet text data cannot be easily analyzed. For example, how to
run a regression with consumer reviews? --- Could this be
treated as fixed effects?
 
 

Text Data
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Yet text data cannot be easily analyzed. For example, how to
run a regression with consumer reviews? --- Could this be
treated as fixed effects?
 
We need to extract meaningful measures from text!
 
Discussion: Which measures can be extracted from text data?

Text Data
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dplyr                                                                   
tidytext
tidyr
textdata
ggplot2
janeaustenr
stringr
syuzhet
wordcloud
RColorBrewer

Packages that will be used today
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Word Frequency
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Let’s create some text in R. 
You don’t need to understand this; it is just used for demonstration.

text <- c("Hong Kong Island, known for its dazzling skyline, vibrant culture, and rich history, 
is a captivating destination nestled on the southeastern coast of China. With its status as a 
Special Administrative Region, Hong Kong Island stands as a remarkable blend of Eastern and 
Western influences, creating a unique and dynamic urban landscape. As one of the two main 
regions that make up the territory of Hong Kong, alongside the Kowloon Peninsula, Hong Kong 
Island is renowned for its cosmopolitan atmosphere, bustling streets, and iconic landmarks.",
          "The island's story is deeply intertwined with the history of Hong Kong itself. 
Originally a sparsely populated area, it gradually transformed into a thriving trading port 
during the 19th century, attracting merchants from around the world. Today, Hong Kong Island 
embodies the city's economic prowess, with its central business district serving as a global 
financial hub and a symbol of its economic significance.",
          "The island's skyline is dominated by towering skyscrapers that showcase architectural 
marvels, blending modernity with traditional Chinese motifs. Among the most prominent landmarks 
is the famous Hong Kong Convention and Exhibition Centre, an architectural gem situated on the 
waterfront. The towering Bank of China Tower and the striking International Finance Centre 
further contribute to the island's impressive skyline.",
          "Beyond its urban splendor, Hong Kong Island offers a diverse range of experiences. 
The district of Central is a paradise for shopaholics, boasting luxury boutiques, international 
brands, and bustling street markets. The vibrant neighborhoods of Sheung Wan and Sai Ying Pun 
offer a glimpse into Hong Kong's colonial past with their quaint streets, antique shops, and 
historic temples.")

1

2

3

4
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Next, we transform the vector into a data frame.

library(dplyr)
library(tidytext)
text_df <- data_frame(line = 1:4, text = text)
text_df

1
2
3
4

Next, we “tokenize” the text, i.e., breaking down a sequence
of text into smaller units called tokens.

mytext <- text_df %>% unnest_tokens(word, text)1

Here, %>% is an operation in the dplyr package, which
applies the tokenization function to the text_df data frame.
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Then, we count the most frequent words in our input text.

mytext %>% count(word, sort = TRUE)1

Any issues with the analysis so far?
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Then, we count the most frequent words in our input text.

mytext %>% count(word, sort = TRUE)1

Any issues with the analysis so far?
 
The issue is many of the frequent
words are meaningless ones such as
“the”, “a”. These words appear in
any text and do not carry specific
meaning. They are called “stop
words” in English.
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We want to remove the stop words from the text.

data(stop_words)
mytext <- mytext %>% anti_join(stop_words)
mytext %>% count(word, sort = TRUE)

1
2
3

Try the code yourself and see if it makes sense to you!
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Let’s visualize the most frequent words!

library(ggplot2)
mytext %>%
  count(word, sort = TRUE) %>%    #sorting the words based on frequency
  filter(n > 1) %>%               #display words that appear more than once
  mutate(word = reorder(word, n)) %>%
  ggplot(aes(word, n)) +
  geom_col() +
  xlab(NULL) +
  coord_flip()

1
2
3
4
5
6
7
8
9
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The complete code is here.

library(dplyr)
library(tidytext)
library(ggplot2)
data(stop_words)
text_df <- data_frame(line = 1:4, text = text)
mytext <- text_df %>% unnest_tokens(word, text)
mytext <- mytext %>% anti_join(stop_words)
mytext %>%
  count(word, sort = TRUE) %>%    #sorting the words based on frequency
  filter(n > 1) %>%               #display words that appear more than once
  mutate(word = reorder(word, n)) %>%
  ggplot(aes(word, n)) +
  geom_col() +
  xlab(NULL) +
  coord_flip()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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In another example, we analyze the distribution of most
frequent words in works of Jane Austen

library(dplyr)
library(tidytext)
library(ggplot2)
library(janeaustenr)
data(stop_words)
original_books <- austen_books()
mytext <- original_books %>%
  unnest_tokens(word, text)
mytext <- mytext %>% anti_join(stop_words)
mytext %>%
  count(word, sort = TRUE) %>%    
  filter(n > 500) %>%               
  mutate(word = reorder(word, n)) %>%
  ggplot(aes(word, n)) +
  geom_col() +
  xlab(NULL) +
  coord_flip()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
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We can further generate a word cloud of the frequent words:

library(wordcloud)
mytext %>%
 anti_join(stop_words) %>%
 count(word) %>%
 with(wordcloud(word, n, max.words = 100))

1
2
3
4
5
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Adding colors to the word cloud:

library(wordcloud)
library(RColorBrewer)
 
mytext %>%
  anti_join(stop_words) %>%
  count(word) %>%
  with(wordcloud(word, n, max.words = 100, 
                 colors = brewer.pal(3, "Blues")))

1
2
3
4
5
6
7
8

We choose three blue colors.
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Sentiment Analysis
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Sentiment Analysis is arguably the most important type of
text analysis. Basically, we want to classify text based on the
valence, which can be either positive or negative (sometimes
it can also be neutral).
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Question:  In your own opinion, how should we perform
sentiment analysis?
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Sentiment Analysis

The basic idea of sentiment analysis is rather simple.
 
We can build two lexicons (i.e., dictionaries) of positive and
negative words. Here are some examples:

Positive: great, amazing, fantastic, excel, …                  
Negative: ugly, terrible, awful, failed, …    

 
Click  to see examples of sentiment lexicons.here
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https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html


Sentiment Analysis

Naturally, if a sentence contains more positive words, it
likely expresses some positive feeling. Instead, a sentence
containing many negative words are likely to express a
negative emotion.
 
In addition, some words are “more positive” than others.
 For example, “great” and “awesome” are stronger than
“OK” and “so so”. In this case, we can assign different
weights to different words.
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Simple Methods

The syuzhet package is a simple R package which allows
you to perform sentiment analysis.

library("syuzhet")
text = "HKU is a fantastic school, I love it."
syuzhet_vector <- get_sentiment(text, method="syuzhet")
head(syuzhet_vector)

1
2
3
4

A positive (negative) output implies positive (negative)
sentiment. 
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Simple Methods

You can perform sentiment analysis with other lexicons.

text = "HKU is a nice school and I like it."
bing_vector <- get_sentiment(text, method="bing")
head(bing_vector)
 
afinn_vector <- get_sentiment(text, method="afinn")
head(afinn_vector)

1
2
3
4
5
6
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Simple Methods

We can go beyond sentiment analysis to find out other
emotions as well. 

text = "HKU is a terrible school."
print(get_nrc_sentiment(text))

1
2
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The Sentiments Dataset

The tidytext package contains several sentiment lexicons in
the sentiments dataset. To visualize the datasets, try the
following code:

library(tidytext)
library(textdata)
sentiments

1
2
3
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The Sentiments Dataset

The tidytext package contains three general-purpose
lexicons, namely

AFINN from Finn 
Bing from 
NRC from         

Årup Nielsen
Bing Liu and collaborators
Saif Mohammad and Peter Turney 
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https://www2.imm.dtu.dk/pubdb/pubs/6010-full.html
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://bit.ly/2s4B8ts


Enter “1” to download the lexicons.

library(tidytext)
library(textdata)
get_sentiments("afinn")
afinn <- get_sentiments("afinn")
print(afinn, n = 100)

1
2
3
4
5

View the lexicons:
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bing <- get_sentiments("bing")
print(bing, n = 100)

1
2
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nrc <- get_sentiments("nrc")
print(nrc, n = 100)

1
2
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A Chinese lexicon here
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https://ximarketing.github.io/class/ABOM/chinese.xlsx


Which words reflect “joy” in Jane Austen’s books?

library(janeaustenr)
library(dplyr)
library(stringr)
tidy_books <- austen_books()  %>%  
unnest_tokens(word, text)
 
nrcjoy <- get_sentiments("nrc") %>%
  filter(sentiment == "joy")
 
tidy_books %>%
  inner_join(nrcjoy) %>%
  count(word, sort = TRUE)

1
2
3
4
5
6
7
8
9
10
11
12
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Most common positive/negative words

bing_word_counts <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort = TRUE)
 
bing_word_counts

1
2
3
4
5
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Visualizing top positive/negative words

bing_word_counts %>%
  group_by(sentiment) %>%
  slice_max(n, n = 10) %>% 
  mutate(word = reorder(word, n)) %>%
  ggplot(aes(n, word, fill = sentiment)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~sentiment, scales = "free_y") +
  labs(x = "Contribution to sentiment",
       y = NULL)

1
2
3
4
5
6
7
8
9
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Question: Are there any issues with the lexicon
based approach?
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Issue #1: Negations

I don’t think HKU is a great school.            
None of us like HKU.

Solution: When we see “not”, we take the opposite of every
word after it until we reach the first punctuation.
I did not like this movie, but I enjoyed this cinema…
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Issue #2: Phrases

Installing Tableau Public is a piece of cake.
Buying the new iPhone costs me an arm and a leg. 

Solution: Adding phrases to your lexicon as well.
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Issue #3: Sarcasm

This phone has an awesome battery back-up of 38 hours.
This phone has an awesome battery back-up of 2 hours.
 
It's +25 outside and I am so hot.
It's -25 outside and I am so hot.
 
This is the best laptop bag ever. It is so good that within two
months of use, it is worthy of being used as a grocery bag.
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Issue #4: Comparison

This product is second to none.
This one is better than the old one.                  
This one is better than nothing. 
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Issue #5: Objective Sentences

I followed his recommendation and bought the stock at $200.
Now the stock price is $100.
He started learning R last year. Today, he does not know how
to run a linear regression.
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Issue #6: Intensions

I am going to throw my Lenovo laptop out of the window.
I am returning this table to IKEA tomorrow.
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Issue #7: Indirect Opinions

With R, I can complete all data analysis in 1 hour that used to
take me 3 hours in the past.
After getting the new lenses, I am able to drive at night again.
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https://www.youtube.com/embed/si8zZHkufRY?enablejsapi=1
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https://www.youtube.com/embed/si8zZHkufRY?enablejsapi=1
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有⼀天，⼀个⼥孩参加数学考试只得了 38 分。她⼼⾥对⽗亲的惩罚充满
恐惧，于是偷偷把分数改成了 88 分。她的⽗亲看到试卷后，怒发冲冠，
狠狠地给了她⼀巴掌，怒吼道：“你这 8 怎么⼀半是绿的⼀半是红的，你
以为我是傻⼦吗？”⼥孩被打后，委屈地哭了起来，什么也没说。过了⼀
会⼉，⽗亲突然崩溃了   。⽗亲崩溃的原因是什么？

 
One day, a girl took a math test and scored only 38 points. Filled with
fear of her father’s punishment, she secretly changed the score to 88.
After seeing the test paper, her father was furious, gave her a harsh slap,
and roared: “Why is half of this 8 green and the other half red, do you
think I’m a fool?” After being slapped, the girl cried grievously and said
nothing. After a while, the father suddenly broke down. What was the
reason for the father's breakdown?
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The reason for the father’s breakdown is that he realized his daughter is colorblind, which implies that

he cannot be her biological father. This realization devastated him. Explanation:

Observing the red and green colors: The father noticed that the modified score of "88" had one half

in red and the other half in green. He was suspicious of this inconsistency and suspected his

daughter was trying to deceive him.

Indication of color blindness: The daughter did not realize she used two different colors because

she is colorblind, specifically red-green colorblind. This condition is rare in females and usually

occurs when the father is colorblind, and the mother is a carrier.

Genetic influence: Color blindness is an X-linked trait, so a colorblind daughter implies that both

her father and mother carry the gene. However, the father can clearly distinguish between red and

green, indicating he is not colorblind.

Conclusion leading to breakdown: Upon realizing this, the father concluded that he is not the

biological father of his daughter, which implied his wife’s infidelity. This devastating discovery led

to his emotional breakdown.

Answer: The father broke down because he realized his daughter was colorblind, proving he was not

her biological father, which devastated him.
56



-gramn
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-gramn

In the analysis so far, we’ve considered words as individual
units, and considered their relationships to sentiments.
However, many interesting text analyses are based on the
relationships between words, whether examining which
words tend to follow others immediately, or that tend to co-
occur within the same documents.
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-gramn

Consider the following text: “The University of Hong Kong
is the oldest institution in Hong Kong.” In the text, we have
tokens such as “University”, “institution”. In addition to
that, we have consecutive sequences of words, which are
known as -gram:

bigram ( ): Hong Kong, oldest institution, ...
trigram ( ): University of Hong Kong, the oldest
institution, ...

n

n = 2
n = 3
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-gramn

library(dplyr)
library(tidytext)
library(janeaustenr)
library(tidyr)
 
 
austen_bigrams <- austen_books() %>%
  unnest_tokens(bigram, text, token = "ngrams", n = 2)  %>%
  count(bigram, sort = TRUE) %>%
  filter(!is.na(bigram))
  
austen_bigrams

1
2
3
4
5
6
7
8
9
10
11
12

Here, we create bigrams from Jane Austen’s books, sort
them by frequency, and remove empty bigrams.
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-gramn

All of these bigrams are meaningless!
Next Step: Remove bigrams containing stop words.
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-gramn

bigrams_separated <- austen_bigrams %>%
  separate(bigram, c("word1", "word2"), sep = " ")
 
bigrams_filtered <- bigrams_separated %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word) 
 
bigrams_filtered

1
2
3
4
5
6
7
8
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The complete code is here.

library(dplyr)
library(tidytext)
library(janeaustenr)
library(tidyr)
 
 
austen_bigrams <- austen_books() %>%
  unnest_tokens(bigram, text, token = "ngrams", n = 2)  %>%
  count(bigram, sort = TRUE) %>%
  filter(!is.na(bigram))
 
bigrams_separated <- austen_bigrams %>%
  separate(bigram, c("word1", "word2"), sep = " ")
 
bigrams_filtered <- bigrams_separated %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word) 
 
bigrams_filtered

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
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How about trigrams?

austen_books() %>%
  unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
  filter(!is.na(trigram)) %>%
  separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%
  filter(!word1 %in% stop_words$word,
         !word2 %in% stop_words$word,
         !word3 %in% stop_words$word) %>%
  count(word1, word2, word3, sort = TRUE)

1
2
3
4
5
6
7
8
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What are the applications of the -gram model?n
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I asked GPT...
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Topic Models
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Topic Models

In text mining, we often have collections of documents,
such as blog posts or news articles, that we’d like to divide
into natural groups so that we can understand them
separately. 
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Topic Models

In your opinion, what is a topic?
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Topic Models

A topic is a distribution over words. For example, when you
mention the following words frequently, you are likely to
talk about the topic “marketing”: advertising, customer
relationship, distribution channel, pricing, product, sales,
market research, …
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Topic Models

A topic is a distribution over words. For example, when you
mention the following words frequently, you are likely to
talk about the topic “flight”: airport, ticket, delay, shuttle
bus, check-in, business-class …
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Topic Models

How to find out topics from a number of documents?
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Topic Models

This is a complex process. The basic idea is, words of the
same topic would often appear together. For example,
“airport” and “shuttle bus” often appear in the same
sentence because they belong to the same topic;
“university” and “education” often appear in the same
sentence as well. However, “airport” and “education” do
not appear frequently in the same sentence.
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The Basics of Topic Models

Every topic is a mixture of words: For example, we could
imagine a two-topic model of news, with one topic for
“politics” and one for “entertainment.” The most common
words in the politics topic might be “President,”
“Congress,” and “government,” while the entertainment
topic may be made up of words such as “movies,”
 “television,” and “actor.” Words can be shared between
topics; a word like “budget” might appear in both equally.
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The Basics of Topic Models

Every document is a mixture of topics: We imagine that
each document may contain words from several topics in
particular proportions. For example, in a two-topic model
we could say “Document 1 is 90% topic A and 10% topic B,
while Document 2 is 30% topic A and 70% topic B.”
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Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a famous topic
modeling algorithm developed by three computer scientists,
David Blei, Andrew Ng and Michael I. Jordan in 2003. Since
then, LDA has become one of the most fundamental
machine learning algorithms. You can find the original
paper for LDA .
 
You don’t need to understand all the mathematics. We just
want to use the algorithm directly.

here
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https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
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https://www.youtube.com/embed/p1I9Sa1lRvk?enablejsapi=1
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https://www.youtube.com/embed/p1I9Sa1lRvk?enablejsapi=1


Demonstration

Please visit for an online demonstration of LDA.
(https://mimno.infosci.cornell.edu/jsLDA/jslda.html)

 
The source files are available on the course website.

 
You can also try the R code on the course website.

here 
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https://mimno.infosci.cornell.edu/jsLDA/jslda.html


Additional Reading (optional):
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