Text Mining

Text Data

Text data is one of the most commonly used types of
unstructured data.

Text data is typically generated by users themselves.

Online reviews, movie critics, Tweets, SMS, WhatsApp and
WeChat messages, Facebook messages...

Packages that will be used today

dplyr

tidytext

tidyr

textdata
goplot2
janeaustenr
stringr
syuzhet
wordcloud
RColorBrewer

Word Frequency

Let’s create some text in R.

You don’t need to understand this; it is just used for demonstration.

text <- c("Hong Kong Island, known for its dazzling skyline, vibrant culture, and rich history,
is a captivating destination nestled on the southeastern coast of China. With its status as a
Special Administrative Region, Hong Kong Island stands as a remarkable blend of Eastern and
Western influences, creating a unique and dynamic urban landscape. As one of the two main
regions that make up the territory of Hong Kong, alongside the Kowloon Peninsula, Hong Kong
Island is renowned for its cosmopolitan atmosphere, bustling streets, and iconic landmarks.",

"The island's story is deeply intertwined with the history of Hong Kong itself.
Originally a sparsely populated area, it gradually transformed into a thriving trading port
during the 19th century, attracting merchants from around the world. Today, Hong Kong Island
embodies the city's economic prowess, with its central business district serving as a global
financial hub and a symbol of its economic significance.",

"The island's skyline is dominated by towering skyscrapers that showcase architectural
marvels, blending modernity with traditional Chinese motifs. Among the most prominent landmarks
is the famous Hong Kong Convention and Exhibition Centre, an architectural gem situated on the
waterfront. The towering Bank of China Tower and the striking International Finance Centre
further contribute to the island's impressive skyline.",

"Beyond its urban splendor, Hong Kong Island offers a diverse range of experiences.
The district of Central is a paradise for shopaholics, boasting luxury boutiques, international
brands, and bustling street markets. The vibrant neighborhoods of Sheung Wan and Sai Ying Pun
offer a glimpse into Hong Kong's colonial past with their quaint streets, antique shops, and
historic temples.")

Next, we transform the vector into a data frame.

1 (dplyr)

p) (tidytext)

3 text df <- data frame(line = 1:4, text = text)
4 text df

Next, we “tokenize” the text, i.e., breaking down a sequence
of text into smaller units called tokens.

1 mytext <- text df %>% unnest tokens(word, text)

Here, %>% is an operation in the dplyr package, which
applies the tokenization function to the text_df data frame.

Then, we count the most frequent words in our input text.

1 mytext %>% count(word, sort =)

Any issues with the analysis so far?

and
of

hong
kong
1s

1ts
island
with

Then, we count the most frequent words in our input text.

1 mytext %>% count(word, sort =)

and
of

hong
kong
1s

1ts
island
with

Any issues with the analysis so far?

The issue is many of the frequent
words are meaningless ones such as
“the”, “a”. These words appear in
any text and do not carry specific
meaning. They are called “stop
words” in English.

10

We want to remove the stop words from the text.

1 data(stop words)
2 mytext <- mytext %>% anti join(stop words)
3 mytext %>% count(word, sort =)

Try the code yourself and see if it makes sense to you!

11

O 0 Jo Ul WD K

Let’s visualize the most frequent words!

(ggplot2)
mytext 33>%
count (word, sort =)
filter(n > 1) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n)) +
geom col() +
xlab() +
coord flip()

oP

>

oP

12

hong -
kong -

island -

island’s -
vibrant -
urban -

towering -

international -
history -
ECONOMIC ~
district -
china-

centre -
central -
bustling -

architectural -

13

00 o O WD P

Y = = =
O W DN - O L

The complete code is here.

(dplyr)
(tidytext)
(ggplot2)
data(stop words)
text df <- data frame(line = 1:4, text = text)
mytext <- text df %>% unnest tokens(word, text)
mytext <- mytext %>% anti join(stop words)
mytext 3I>%
count (word, sort =) %>%
filter(n > 1) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n)) +
geom col() +
xlab() +
coord flip()

14

00 o O WD P

N T = Y == W SO S
<N O O WD R O L0

In another example, we analyze the distribution of most
frequent words in works of Jane Austen

(dplyr)
(tidytext)
(ggplot2)
(janeaustenr)
data(stop words)
original books <- austen books()
mytext <- original books %>%
unnest tokens(word, text)
mytext <- mytext %>% anti join(stop words)
mytext 3I>%
count (word, sort =) %>%
filter(n > 500) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n)) +
geom col() +
xlab() +
coord flip()

15

time -

fanny -

dear-
lady -

sir-

day -
emma-
sister-
house -
elizabeth -
elinor -
hope -
friend -
family -
mind -
father -
jane -
home -
mother -
catherine -

happy -
mament -
half -

16

We can further generate a word cloud of the frequent words:

1 (wordcloud)

2 mytext 3>%

3 anti join(stop words) %>%

4 count(word) %>%

5 with(wordcloud(word, n, max.words = 100))

17

sister -

crawfordpleasure m ISS

captain obliged looked love
edmundanswer mo_rnlng
manner shomchntl | | subject
minutes - marianne momentfeelings

anN€darcy replied affection walk s |inor bro her

woman sort |eavem0ther arty
Lvisitspeak heard till perrectlycoen’slfort |mmed|ate|y

=5 criedha £doubljife
-Qday _cglllacqualniglr?gesw £father

N passed = feelaunt heartword t|;r31n03 deal

= broughtopinion e res
v o e ope fes - dear

return Spirits wm'"gcharacter poor told

harriet
attention MINARILIE colonel =

left fanny emma found -

idea woodhouse |etter mﬂ-
happiness home _Cm

house triand knightley

4
1]
c
| o
L]
s
b
7]
o
Q.
o
3
w

hour o

o

thom

lady3 s

D
catherme

18

00O Jo Ul WD B

Adding colors to the word cloud:

(wordcloud)
(RColorBrewer)

mytext 3>%
anti join(stop words) %>%
count (word) %>%
with (wordcloud(word, n, max.words = 100,
colors = brewer.pal(3, "Blues'")))

We choose three blue colors.

19

Sentiment Analysis

Sentiment Analysis is arguably the most important type of
text analysis. Basically, we want to classify text based on the
valence, which can be either positive or negative (sometimes
it can also be neutral).

© ©

22

l-e Finextra

Quant trader turns to reddit for sentiment forecaster

New York-based quantitative hedge fund Cindicator Capital is

advertising for an active member of the wallstreetbets subreddit

community to ... @ . e
Business Wire

3 W jee |- 5 ago

Join the Swarm of Retail Investors Driving Sentiment.
New ...

An investment in VanEck Vectors® Social Sentiment ETF (BUZZ) may
be ... participant concentration, new fund, absence of prior active
nmr‘ket,

5 days

BT RO ZRES . = Rj‘@%ﬁﬁﬂﬂﬂ%/ﬂ\b&i
BRI TR

23

Question: In your own opinion, how should we perform
sentiment analysis?

24

Simple Methods

The syuzhet package is a simple R package which allows
you to perform sentiment analysis.

1 ("syuzhet")

2 text = "HKU is a fantastic school, I love it."

3 syuzhet vector <- get sentiment(text, method="syuzhet")
4 head(syuzhet vector)

A positive (negative) output implies positive (negative)
sentiment.

27

Simple Methods

You can perform sentiment analysis with other lexicons.

text = "HKU is a nice school and I like it."
bing vector <- get sentiment(text, method="bing")
head(bing vector)

afinn vector <- get sentiment(text, method="afinn")
head(afinn vector)

o O LW N -

28

Simple Methods

We can go beyond sentiment analysis to find out other
emotions as well.

1 text = "HKU is a terrible school.”
2 print(get nrc sentiment(text))

29

The Sentiments Dataset

The tidytext package contains several sentiment lexicons in
the sentiments dataset. To visualize the datasets, try the
following code:

1 (tidytext)
2 (textdata)
3 sentiments

30

The Sentiments Dataset

The tidytext package contains three general-purpose
lexicons, namely

« AFINN from Finn Arup Nielsen

 Bing from Bing Liu and collaborators
e NRC from Saif Mohammad and Peter Turney

31

https://www2.imm.dtu.dk/pubdb/pubs/6010-full.html
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://bit.ly/2s4B8ts

View the lexicons:

(tidytext)

(textdata)
get sentiments("afinn")
4 afinn <- get sentiments("afinn")
print(afinn, n = 100)

Enter “1” to download the lexicons.

> get_sentiments("afinn")
Do you want to download:

Name: AFINN-111
URL: http://www2.imm.dtu.dk/pubdb/views/publication_details.php?i1d=6010

License: Open Database License (0ODbL) v1.0
Size: 78 KB (cleaned 59 KB)

Download mechanism: https

1: Yes
2: No

selection: 1

32

word
<chr>
abandon
abandoned
abandons
abducted
abduction

abductions
abhor
abhorred
abhorrent
abhors
abilities
ability

33

1 bing <- get sentiments("bing")
2 print(bing, n = 100)

2-faces hegative
abnormal hegative
abolish nhegative
abominable hegative
abominably hegative
abominate hegative

abomination hegative
abort hegative
aborted hegative
aborts nhegative
abound positive
abounds positive

1 nrc <- get sentiments('"nrc")
2 print(nrc, n = 100)

abacus
abandon
abandon
abandon
abandoned
abandoned

abandoned
abandoned
abandonment
abandonment
abandonment
abandonment

trust
fear
hegative
sadness
anger
fear
nhegative
sadness
anger
fear
nhegative
sadness

35

A Chinese lexicon here

36

https://ximarketing.github.io/class/ABOM/chinese.xlsx

Which words reflect “joy” in Jane Austen’s books?

00 o O WD P

l_\
o O

11
12

(janeaustenr)

(dplyr)

(stringr)
tidy books <- austen books() %>%
unnest tokens(word, text)

nrcjoy <- get sentiments('nrc") %>%
filter(sentiment == "joy")

tidy books %>%
inner join(nrcjoy) %>%
count (word, sort =)

37

O & WD -

Most common positive / negative words

bing word counts <- tidy books %>%
inner join(get sentiments("bing")) %>%
count (word, sentiment, sort =)

bing word counts

38

Visualizing top positive / negative words

1 bing word counts %>%

2 group by(sentiment) %>%

3 slice max(n, n = 10) %>%

4 mutate(word = reorder(word, n)) %>%

5 ggplot(aes(n, word, fill = sentiment)) +

6 geom col(show.legend =) +

7 facet wrap(~sentiment, scales = "free y") +
8 labs(x = "Contribution to sentiment",

)

y =)

39

negative

doubt -

object -

impossible -

afraid -

scarcely -

anxious -

positive

better -

enough -

happy -

pleasure -

happiness -

= -
—
45}
=
=)

Contribution to sentiment

https:/ /www.youtube.com /embed /si8zZHkufRY?enablejsapi=1

49

https://www.youtube.com/embed/si8zZHkufRY?enablejsapi=1

m
n-gra

n-gram

In the analysis so far, we've considered words as individual
units, and considered their relationships to sentiments.
However, many interesting text analyses are based on the
relationships between words, whether examining which
words tend to follow others immediately, or that tend to co-
occur within the same documents.

56

n-gram

Consider the following text: “The University of Hong Kong
is the oldest institution in Hong Kong.” In the text, we have

tokens such as “University”, “institution”. In addition to
that, we have consecutive sequences of words, which are

known as n-gram:

e bigram (n = 2): Hong Kong, oldest institution, ...
o trigram (n = 3): University of Hong Kong, the oldest
institution, ...

57

n-gram

1 (dplyr)

y) (tidytext)

3 (janeaustenr)

4 (tidyr)

5

6

7 austen bigrams <- austen books() %>%
8 unnest tokens(bigram, text, token = "ngrams", n = 2) &>
9 count (bigram, sort =) %>%

10 filter(!is.na(bigram))

11

12 austen bigrams

Here, we create bigrams from Jane Austen’s books, sort
them by frequency, and remove empty bigrams.

oP

58

> austen_bigrams

j]

bigram

of the
to be

in the
it was

i am

she had
of her
to the
she was
had been

[y R S i I i :
W Pl ™ WA

Ly I U TR I W R R T il B i T N

R N I S S
[y e I

kad
= =

T T T e A N LT o]
|_':| [

Ml ktd

All of these bigrams are meaningless!

Next Step: Remove bigrams containing stop words.

59

00O Jo Ul WD B

n-gram

bigrams separated <- austen bigrams %>%
separate(bigram, c("wordl", "word2"),

bigrams filtered <- bigrams separated
filter(!wordl %in% stop wordsSword)
filter(!word2 %in% stop wordsSword)

3
3

bigrams filtered

>
>

sep

o o©

60

00 o O WD P

N T o N S S S Sy S S ST Sy o
O 0 JOoOVUlL WN - O LW

The complete code is here.

(dplyr)
(tidytext)
(janeaustenr)
(tidyr)

austen bigrams <- austen books() %>%
unnest tokens(bigram, text, token = "ngrams", n
count (bigram, sort =) %>%
filter(!is.na(bigram))

2)

oP
\Y
oP

bigrams separated <- austen bigrams %>%
separate(bigram, c("wordl", "word2"), sep = " ")

bigrams filtered <- bigrams separated %>%
filter(!wordl %in% stop words$Sword) %>%

filter(!word2 %$in% stop words$word)

bigrams filtered

61

How about trigrams?

1 austen books() %>%

2 unnest tokens(trigram, text, token = "ngrams", n = 3) %>%

3 filter(!is.na(trigram)) %>%

4 separate(trigram, c("wordl", "word2", "word3"), sep = " ") %>%
5 filter(!wordl stop words$word,
6
7
8

o©°

!word2 stop words$word,
!word3 stop words$word) %>%
count (wordl, word2, word3, sort =)

o o©
o° o9 o©

(674

Topic Models

Topic Models

In text mining, we often have collections of documents,
such as blog posts or news articles, that we’d like to divide
into natural groups so that we can understand them
separately.

66

PROBAEILISTIC GENERATIVE PROCESS

TOPIC 2

DOC1: money! bank' loan’
bank! money! money’
bank’ loan’

DOC2: money' bank’
bank® river? loan' stream?
bank' money'

DOC3: rivers bank?
stream® bank® rivers river?
stream? bank?

74

gene
dna
genatic

Life
evolve
organism

CER

data
numbe
compuber

0.04
0.02
0.01

0.02
0.01
0.01

Seeking

Documents

Life’s Bare (Genetic) Necessities

Topic proportions and
assignments

75

[atent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a famous topic
modeling algorithm developed by three computer scientists,
David Blei, Andrew Ng and Michael . Jordan in 2003. Since
then, LDA has become one of the most fundamental
machine learning algorithms. You can find the original
paper for LDA here.

You don’t need to understand all the mathematics. We just
want to use the algorithm directly.

76

https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

Journal fachine Learning Research 3 (- nitte Published 1/03

Latent Dirichlet Allocation

D.md M. Bleu .BERKELEY.EDU

STANFORD.EDU

ael 1. Jordan 10 N(@CS.BERKELEY.EDU

Computer Science Division and Department of Statistics

University of California

Berkeley, CA 94

Editor: John Lafferty

Abstract

ion (LDA)
discrete data such as text corpora. LDA is a three-level hiera
item of a collection is mu-de.‘.l. ﬁnitc mi\'ture.‘ over an underlying set c\ftopics topic is, in
turn, mod cd- an infinite set of lup pruhahlllt' . In the context of

empirical Bayes parameter estimation. We report results in document modclinﬂ. text ¢
and collaborative filtering, comparing to a mixture of unigrams model and the pro
model.

77

https:/ / www.youtube.com /embed /p119SallRvk?enablejsapi=1

78

https://www.youtube.com/embed/p1I9Sa1lRvk?enablejsapi=1

Demonstration

Please visit here for an online demonstration of LDA.
(https:/ /mimno.infosci.cornell.edu /jsLDA /jslda.html)

The source files are available on the course website.

You can also try the R code on the course website.

79

https://mimno.infosci.cornell.edu/jsLDA/jslda.html

Additional Reading (optional):

e

Text Mining
with R

Julia Silge & David Robinson

80

