
Text Mining

1

Text data is one of the most commonly used types of
unstructured data.

Text data is typically generated by users themselves.
Online reviews, movie critics, Tweets, SMS, WhatsApp and
WeChat messages, Facebook messages…

Text Data

2

dplyr
tidytext
tidyr
textdata
ggplot2
janeaustenr
stringr
syuzhet
wordcloud
RColorBrewer

Packages that will be used today

5

Word Frequency

6

Let’s create some text in R.
You don’t need to understand this; it is just used for demonstration.

text <- c("Hong Kong Island, known for its dazzling skyline, vibrant culture, and rich history,
is a captivating destination nestled on the southeastern coast of China. With its status as a
Special Administrative Region, Hong Kong Island stands as a remarkable blend of Eastern and
Western influences, creating a unique and dynamic urban landscape. As one of the two main
regions that make up the territory of Hong Kong, alongside the Kowloon Peninsula, Hong Kong
Island is renowned for its cosmopolitan atmosphere, bustling streets, and iconic landmarks.",
 "The island's story is deeply intertwined with the history of Hong Kong itself.
Originally a sparsely populated area, it gradually transformed into a thriving trading port
during the 19th century, attracting merchants from around the world. Today, Hong Kong Island
embodies the city's economic prowess, with its central business district serving as a global
financial hub and a symbol of its economic significance.",
 "The island's skyline is dominated by towering skyscrapers that showcase architectural
marvels, blending modernity with traditional Chinese motifs. Among the most prominent landmarks
is the famous Hong Kong Convention and Exhibition Centre, an architectural gem situated on the
waterfront. The towering Bank of China Tower and the striking International Finance Centre
further contribute to the island's impressive skyline.",
 "Beyond its urban splendor, Hong Kong Island offers a diverse range of experiences.
The district of Central is a paradise for shopaholics, boasting luxury boutiques, international
brands, and bustling street markets. The vibrant neighborhoods of Sheung Wan and Sai Ying Pun
offer a glimpse into Hong Kong's colonial past with their quaint streets, antique shops, and
historic temples.")

1

2

3

4

7

Next, we transform the vector into a data frame.

library(dplyr)
library(tidytext)
text_df <- data_frame(line = 1:4, text = text)
text_df

1
2
3
4

Next, we “tokenize” the text, i.e., breaking down a sequence
of text into smaller units called tokens.

mytext <- text_df %>% unnest_tokens(word, text)1

Here, %>% is an operation in the dplyr package, which
applies the tokenization function to the text_df data frame.

8

Then, we count the most frequent words in our input text.

mytext %>% count(word, sort = TRUE)1

Any issues with the analysis so far?

9

Then, we count the most frequent words in our input text.

mytext %>% count(word, sort = TRUE)1

Any issues with the analysis so far?

The issue is many of the frequent
words are meaningless ones such as
“the”, “a”. These words appear in
any text and do not carry specific
meaning. They are called “stop
words” in English.

10

We want to remove the stop words from the text.

data(stop_words)
mytext <- mytext %>% anti_join(stop_words)
mytext %>% count(word, sort = TRUE)

1
2
3

Try the code yourself and see if it makes sense to you!

11

Let’s visualize the most frequent words!

library(ggplot2)
mytext %>%
 count(word, sort = TRUE) %>% #sorting the words based on frequency
 filter(n > 1) %>% #display words that appear more than once
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(word, n)) +
 geom_col() +
 xlab(NULL) +
 coord_flip()

1
2
3
4
5
6
7
8
9

12

13

The complete code is here.

library(dplyr)
library(tidytext)
library(ggplot2)
data(stop_words)
text_df <- data_frame(line = 1:4, text = text)
mytext <- text_df %>% unnest_tokens(word, text)
mytext <- mytext %>% anti_join(stop_words)
mytext %>%
 count(word, sort = TRUE) %>% #sorting the words based on frequency
 filter(n > 1) %>% #display words that appear more than once
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(word, n)) +
 geom_col() +
 xlab(NULL) +
 coord_flip()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

14

In another example, we analyze the distribution of most
frequent words in works of Jane Austen

library(dplyr)
library(tidytext)
library(ggplot2)
library(janeaustenr)
data(stop_words)
original_books <- austen_books()
mytext <- original_books %>%
 unnest_tokens(word, text)
mytext <- mytext %>% anti_join(stop_words)
mytext %>%
 count(word, sort = TRUE) %>%
 filter(n > 500) %>%
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(word, n)) +
 geom_col() +
 xlab(NULL) +
 coord_flip()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

15

16

We can further generate a word cloud of the frequent words:

library(wordcloud)
mytext %>%
 anti_join(stop_words) %>%
 count(word) %>%
 with(wordcloud(word, n, max.words = 100))

1
2
3
4
5

17

18

Adding colors to the word cloud:

library(wordcloud)
library(RColorBrewer)

mytext %>%
 anti_join(stop_words) %>%
 count(word) %>%
 with(wordcloud(word, n, max.words = 100,
 colors = brewer.pal(3, "Blues")))

1
2
3
4
5
6
7
8

We choose three blue colors.

19

20

Sentiment Analysis

21

Sentiment Analysis is arguably the most important type of
text analysis. Basically, we want to classify text based on the
valence, which can be either positive or negative (sometimes
it can also be neutral).

22

23

Question: In your own opinion, how should we perform
sentiment analysis?

24

Simple Methods

The syuzhet package is a simple R package which allows
you to perform sentiment analysis.

library("syuzhet")
text = "HKU is a fantastic school, I love it."
syuzhet_vector <- get_sentiment(text, method="syuzhet")
head(syuzhet_vector)

1
2
3
4

A positive (negative) output implies positive (negative)
sentiment.

27

Simple Methods

You can perform sentiment analysis with other lexicons.

text = "HKU is a nice school and I like it."
bing_vector <- get_sentiment(text, method="bing")
head(bing_vector)

afinn_vector <- get_sentiment(text, method="afinn")
head(afinn_vector)

1
2
3
4
5
6

28

Simple Methods

We can go beyond sentiment analysis to find out other
emotions as well.

text = "HKU is a terrible school."
print(get_nrc_sentiment(text))

1
2

29

The Sentiments Dataset

The tidytext package contains several sentiment lexicons in
the sentiments dataset. To visualize the datasets, try the
following code:

library(tidytext)
library(textdata)
sentiments

1
2
3

30

The Sentiments Dataset

The tidytext package contains three general-purpose
lexicons, namely

AFINN from Finn
Bing from
NRC from

Årup Nielsen
Bing Liu and collaborators
Saif Mohammad and Peter Turney

31

https://www2.imm.dtu.dk/pubdb/pubs/6010-full.html
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://bit.ly/2s4B8ts

Enter “1” to download the lexicons.

library(tidytext)
library(textdata)
get_sentiments("afinn")
afinn <- get_sentiments("afinn")
print(afinn, n = 100)

1
2
3
4
5

View the lexicons:

32

33

bing <- get_sentiments("bing")
print(bing, n = 100)

1
2

34

nrc <- get_sentiments("nrc")
print(nrc, n = 100)

1
2

35

A Chinese lexicon here

36

https://ximarketing.github.io/class/ABOM/chinese.xlsx

Which words reflect “joy” in Jane Austen’s books?

library(janeaustenr)
library(dplyr)
library(stringr)
tidy_books <- austen_books() %>%
unnest_tokens(word, text)

nrcjoy <- get_sentiments("nrc") %>%
 filter(sentiment == "joy")

tidy_books %>%
 inner_join(nrcjoy) %>%
 count(word, sort = TRUE)

1
2
3
4
5
6
7
8
9
10
11
12

37

Most common positive/negative words

bing_word_counts <- tidy_books %>%
 inner_join(get_sentiments("bing")) %>%
 count(word, sentiment, sort = TRUE)

bing_word_counts

1
2
3
4
5

38

Visualizing top positive/negative words

bing_word_counts %>%
 group_by(sentiment) %>%
 slice_max(n, n = 10) %>%
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(n, word, fill = sentiment)) +
 geom_col(show.legend = FALSE) +
 facet_wrap(~sentiment, scales = "free_y") +
 labs(x = "Contribution to sentiment",
 y = NULL)

1
2
3
4
5
6
7
8
9

39

40

https://www.youtube.com/embed/si8zZHkufRY?enablejsapi=1

49

https://www.youtube.com/embed/si8zZHkufRY?enablejsapi=1

-gramn

55

-gramn

In the analysis so far, we’ve considered words as individual
units, and considered their relationships to sentiments.
However, many interesting text analyses are based on the
relationships between words, whether examining which
words tend to follow others immediately, or that tend to co-
occur within the same documents.

56

-gramn

Consider the following text: “The University of Hong Kong
is the oldest institution in Hong Kong.” In the text, we have
tokens such as “University”, “institution”. In addition to
that, we have consecutive sequences of words, which are
known as -gram:

bigram (): Hong Kong, oldest institution, ...
trigram (): University of Hong Kong, the oldest
institution, ...

n

n = 2
n = 3

57

-gramn

library(dplyr)
library(tidytext)
library(janeaustenr)
library(tidyr)

austen_bigrams <- austen_books() %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
 count(bigram, sort = TRUE) %>%
 filter(!is.na(bigram))

austen_bigrams

1
2
3
4
5
6
7
8
9
10
11
12

Here, we create bigrams from Jane Austen’s books, sort
them by frequency, and remove empty bigrams.

58

-gramn

All of these bigrams are meaningless!
Next Step: Remove bigrams containing stop words.

59

-gramn

bigrams_separated <- austen_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)

bigrams_filtered

1
2
3
4
5
6
7
8

60

The complete code is here.

library(dplyr)
library(tidytext)
library(janeaustenr)
library(tidyr)

austen_bigrams <- austen_books() %>%
 unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
 count(bigram, sort = TRUE) %>%
 filter(!is.na(bigram))

bigrams_separated <- austen_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")

bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word)

bigrams_filtered

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

61

How about trigrams?

austen_books() %>%
 unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
 filter(!is.na(trigram)) %>%
 separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%
 filter(!word1 %in% stop_words$word,
 !word2 %in% stop_words$word,
 !word3 %in% stop_words$word) %>%
 count(word1, word2, word3, sort = TRUE)

1
2
3
4
5
6
7
8

62

Topic Models

65

Topic Models

In text mining, we often have collections of documents,
such as blog posts or news articles, that we’d like to divide
into natural groups so that we can understand them
separately.

66

74

75

Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a famous topic
modeling algorithm developed by three computer scientists,
David Blei, Andrew Ng and Michael I. Jordan in 2003. Since
then, LDA has become one of the most fundamental
machine learning algorithms. You can find the original
paper for LDA .

You don’t need to understand all the mathematics. We just
want to use the algorithm directly.

here

76

https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

77

https://www.youtube.com/embed/p1I9Sa1lRvk?enablejsapi=1

78

https://www.youtube.com/embed/p1I9Sa1lRvk?enablejsapi=1

Demonstration

Please visit for an online demonstration of LDA.
(https://mimno.infosci.cornell.edu/jsLDA/jslda.html)

The source files are available on the course website.

You can also try the R code on the course website.

here

79

https://mimno.infosci.cornell.edu/jsLDA/jslda.html

Additional Reading (optional):

80

