
Web Scraping

1

Hey, web scraping!

You may want to…

download all videos from a website;
download all news articles from a media platform;
download all academic papers from a journal;
download all tweets/weibo of a specific person.

You may need to spend days and nights downloading these
data manually, and you can easily make a lot of mistakes.

2

Hey, web scraping!

In today’s class, we are going to learn about webscraping.
 In Chinese, it is called ⽹络爬⾍.

What is webscraping?
 Using tools to gather data you can see on a webpage.
 Almost anything you see on a website can be scraped.

It can be done with python, R,… We are doing it on R.

3

https://www.youtube.com/embed/Ct8Gxo8StBU?enablejsapi=1

4

https://www.youtube.com/embed/Ct8Gxo8StBU?enablejsapi=1

Learning about HTML

HTML stands for “HyperText Markup Language.”

Websites are written on the HTML language, and web
scraping is based on reading and interpreting the HTML of
a webpage.

But how to find the HTML of a webpage?

5

Learning about HTML

Please use Google Chrome as your browser.

If you are not a current user of Google Chrome, download
and install one on your laptop. Google Chrome is
particularly helpful for analyzing webpages for scraping.

6

7

8

Learning about HTML

The data you want to scrape appears in certain place of the
HTML. For example, suppose that you want to scrape data
from the HKU marketing faculty :

webpage

9

https://www.hkubs.hku.hk/people/faculty?pg=1&staff_type=faculty&subject_area=marketing&track=all

Learning about HTML

You can find the name and images of the professors from
the HTML file:

10

Learning about HTML

And even the link to their photos (see for example).this link

11

https://www.hkubs.hku.hk/wp-content/uploads/fly-images/8059/Dr_Du_Jinzhou_2019-scaled-800x800-ct.jpg

Secret: Changing the webpage

12

Webscraping

Suppose that you want to download the names of each
individual marketing faculty, what should you do?

First, you need to get the HTML for the webpage.

Second, you need to analyze the HTML to get the desired
information --- this is much more difficult.

13

Webscraping

install.packages("rvest")
library(rvest)
url = "https://www.hkubs.hku.hk/people/faculty?
pg=1&staff_type=faculty&subject_area=marketing&track=all"
webpage = read_html(url, encoding = "UTF-8")
print(webpage)

1
2
3

4
5

14

Webscraping

Now, you get the HTML source file here. The next thing you
need to do it to understand the HTML file, which is very
challenging.

15

Webscraping

To better understand the HTML code, you are strongly
recommended to use Chrome as your browser.

Chrome allows you to check the HTML code in a much
more convenient matter.

16

Check HTML with Chrome

Open the webpage in your
Chrome browser.

Click the upper right Chome
setting button of your
browser and you will be
directed here.

17

Check HTML with Chrome

Choose “More tools”…
Choose “Developer tools”…

18

Check HTML with Chrome

Click the button and you will
get to “select an element in the
page to inspect it”.

Alternatively, use “Ctrl + Shift +
C.”

If needed, also click the
 button to switch between
desktop and mobile version.

19

Check HTML with Chrome

Take Prof. Du’s information as an example. You can see his
name appears here in the HTML code. But what does this
mean?

20

21

https://www.youtube.com/emb
ed/u0OeZfIfBRI?enablejsapi=1

https://www.youtube.com/embed/u0OeZfIfBRI?enablejsapi=1

22

https://www.youtube.com/embed/u0OeZfIfBRI?enablejsapi=1
https://www.youtube.com/embed/u0OeZfIfBRI?enablejsapi=1

Understanding HTML

Here, the name information is within a “div” node.

And this node belongs to a “div” node.

This “div” node further belongs to another “a” node.

And so on….

We call this is “path”: …div/div/div/a/div/div

23

Understanding HTML

You can see that we have various types of nodes, including
“div”, “a”, and “img”. You may wonder, “what do these
types mean?”

Here, these types are called “tag”. For example, an “img”
tag is used to mark up an image in the HTML language.

For detailed information, check .here

24

https://www.w3schools.com/tags/

Understanding HTML

Root

body

other layers

a

div

div

other nodes other nodesother nodes

other nodesother nodes

25

other nodesother nodes

other nodesother nodes

other nodes

other nodes

other nodes

Understanding HTML

This is something like your home address:

We have something like…
Country/Province/City/District/Street/Building/Floor/R
oom

The path helps us locate nodes and find the content of the
nodes.

26

Understanding HTML

However, unlike your home address, here each node does
not have its name.

For example, we know it is a “div” node (not an “a” node)
but there may be multiple “div” nodes.

My building is in a street (not an avenue or road) but there
may be multiple streets here.

27

Understanding HTML

Let’s get all “div” nodes. This can be done by running this:

You can see that in total we have 262 “div” nodes.

nodes <- html_nodes(webpage,xpath = '//div')1

print(length(nodes))1

28

Understanding HTML

We want to make the path more accurate to pin down to the
“div” nodes that we are interested in. That is, we want to
remove other unrelated “div” nodes.

We can do this by putting more restrictions on the path.

29

https://www.youtube.com/embed/vNOyRZIkC7o?enablejsapi=1

30

https://www.youtube.com/embed/vNOyRZIkC7o?enablejsapi=1

Understanding HTML

Consider the following code:

Here we restrict the parent of the “div” node must also be a
“div” node. Now, we have 208 nodes --- still too many.

nodes <- html_nodes(webpage,xpath = '//div/div')
print(length(nodes))

1
2

31

Understanding HTML

Consider the following code:

Here we restrict the parent of the “div” node must also be a
“div” node. Moreover, the its parent node must have a class
attribute will is called “people-info.”

nodes <- html_nodes(webpage,xpath = '//div[@class="people-info"]/div')
print(length(nodes))

1
2

32

Understanding HTML

Now, we only have 16 div nodes selected. These are actually
all HKU marketing faculties. Let us print their names:

nodes <- html_nodes(webpage,xpath = '//div[@class="people-info"]/div')
for (node in nodes)
 print(html_text(node))

1
2
3

33

Understanding HTML

You can also use other refinement to select the nodes that
you are looking for. For example, the following codes work
as well:

nodes <- html_nodes(webpage,xpath = '//div[@class="h5"]')
for (node in nodes)
 print(html_text(node))

1
2
3

34

The complete code is here.

library(rvest)
url = "https://www.hkubs.hku.hk/people/faculty?
pg=1&staff_type=faculty&subject_area=marketing&track=all"
webpage = read_html(url, encoding = "UTF-8")
nodes <- html_nodes(webpage,xpath = '//div[@class="h5"]')
for (node in nodes)
 print(html_text(node))

1
2

3
4
5
6

35

Exercise

Great! You know have a sense of how to scrape data from
the web. It is very preliminary, and you will need a lot more
exercises. Let us try the following exercise.

36

Exercise

HKU makes press announcements on its official news
: https://hku.hk/press/all/webpage

37

https://hku.hk/press/all/

Exercise

Try to download the titles of these press articles!

: https://hku.hk/press/all/URL

38

https://hku.hk/press/all/

Exercise

First, let us scrape the titles. We must understand the
corresponding HTML code to scrape the data.

39

library(rvest)
url = "https://hku.hk/press/all/"
webpage = read_html(url, encoding = "UTF-8")
nodes <- html_nodes(webpage,xpath = '//div[@class="press-
item"]/span/a')
for (node in nodes)
 print(html_text(node))

1
2
3
4

5
6

40

Exercise

Now, let us visit the Harvard School of Professional
Learning: https://pll.harvard.edu/trending

41

Exercise

In this exercise, we attempt to scrape the course titles, e.g.,
“CS50's Introduction to Artificial Intelligence with Python”

Try this exercise yourself!

42

Exercise

First, we identify the root of each individual course. We
need to inspect the HTML code first.

43

library(rvest)
url = "https://pll.harvard.edu/trending"
webpage = read_html(url, encoding = "UTF-8")
nodes <- html_nodes(webpage,xpath = '//h3/a')
for (node in nodes)
 print(html_text(node))

1
2
3
4
5
6

44

Scraping Images

Previously, we have discussed how to scrape text
information from a website using a web scraper.

Now, let us consider scraping images from the web.

45

Scraping Images

Let us go back to the HKU marketing faculty :webpage

46

https://www.fbe.hku.hk/people/faculty?pg=1&staff_type=faculty&subject_area=marketing&track=all

Scraping Images

You can find a link to each photo (in “src” or ”data-src”
attribute):

47

Scraping Images

Once you get the , you will have access to the photo.

An example of link: https://www.hkubs.hku.hk/wp-
content/uploads/fly-images/11554/FBE_0712_web--
scaled-800x800-ct.jpg

So, our first step to get the link information.

link

48

https://www.hkubs.hku.hk/wp-content/uploads/fly-images/11554/FBE_0712_web--scaled-800x800-ct.jpg

Scraping Images

url = "https://www.fbe.hku.hk/people/faculty?
pg=1&staff_type=faculty&subject_area=marketing&track=all"
webpage = read_html(url, encoding = "UTF-8")
image_nodes <- html_nodes(webpage,xpath =
'//div/a/img[@width="800"]')
print(length(image_nodes))

1

2
3

4

49

Scraping Images

But that’s not enough. We not only want to get the nodes,
but also need the link to each of the nodes. The link appears
in the “src” or “data-src” attribute.

50

Scraping Images

But that’s not enough. We not only want to get the nodes,
but also need the link to each of the nodes. The link appears
in the “src” or “data-src” attribute.

image_nodes <- html_nodes(webpage,xpath = '//div/a/img[@width="800"]')
for (image in image_nodes)
{
 photourl <- html_attr(image, "data-src")
 print(photourl)
}

1
2
3
4
5
6

51

Scraping Images

for (image in image_nodes)
{
 photourl <- html_attr(image, "data-src")
 print(photourl)
 download.file(photourl,
 paste0(toString(number),'_HKU_Photo.jpg'), mode = 'wb')
 number = number + 1
}

1
2
3
4
5
6
7
8

52

The compete code is here.

url = "https://www.fbe.hku.hk/people/faculty?
pg=1&staff_type=faculty&subject_area=marketing&track=all"
webpage = read_html(url, encoding = "UTF-8")
image_nodes <- html_nodes(webpage,xpath = '//div/a/img[@width="800"]')
number = 1
for (image in image_nodes)
{
 photourl <- html_attr(image, "data-src")
 print(photourl)
 download.file(photourl,
 paste0(toString(number),'_HKU_Photo.jpg'), mode = 'wb')
 number = number + 1
}

1

2
3
4
5
6
7
8
9
10
11
12

53

Static vs. Dynamic
Websites

54

https://www.youtube.com/embed/hlg6q6OFoxQ?enablejsapi=1

55

https://www.youtube.com/embed/hlg6q6OFoxQ?enablejsapi=1

Dynamic Websites

What we learned in today’s class works well for static
websites. But it does not work equally well on dynamic
websites. If you want to scrape data from a dynamic
website, you may need to use some more advanced tools.

56

Dynamic Websites

If you want to scrape data from a dynamic website, there is
a tool called “selenium”. We also have a packaged called
“RSelenium” in R.

The selenium tool allows your scraper to visit a webpage
like a human-being. That is, if you write a scraper with
selenium, your scraper will also be able to scroll down your
pages, click buttons, enter your password, etc.

57

Dynamic Websites (Optional)

To scrape from a dynamic website, you need to:

Install package “RSelenium”
Install Firefox browser
Download and install Java JDK and add its path to your
system environment variable “PATH”
Download and unzip Firefox Driver and add its path to
your system environment variable “PATH”

58

Dynamic Websites (Optional)

59

library(RSelenium)
driver <- rsDriver(browser="firefox", port=4990L, verbose=F, chromever =
NULL)
remote_driver <- driver[["client"]]
remote_driver$open()
remote_driver$navigate("https://ximarketing.github.io")
element <- remote_driver$findElement(using = "xpath", value =
'//a[contains(text(),"Teaching")]')
element$clickElement()
Sys.sleep(5)
element <- remote_driver$findElement(using = "xpath", value =
'//a[contains(text(),"Algorithms")]')
element$clickElement()
Sys.sleep(5)
element <- remote_driver$findElement(using = "xpath", value = '//input')
element$sendKeysToElement(list("2425"))
Sys.sleep(5)
element <- remote_driver$findElement(using = "xpath", value = '//button')
element$clickElement()
Sys.sleep(5)
remote_driver$close()

1
2

3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18

Demonstration (Optional)

60

Thank you!
Enjoy scraping!

61

