
Programming with R

1



Reminder: Group Information Submission

Each group consists of up to 8 students (and at least 1).
You need to choose a name for your group, e.g., “Marketers”,
“Fantastic”, “A Plus”…
Submit your group info on Moodle on or before Dec 3, 23:59.
Let the TA Ray Song (soongray@hku.hk) know if you cannot
find a group.

2



What is R?
 

R is a programming language. It is not a statistics program like
SPSS, SAS, JMP or Minitab, and doesn’t wish to be one. The
official R Project describes R as “a language and
environment for statistical computing and graphics.” 

3



Why R?
 

R offers the largest and most diverse set of analytic tools
and statistical methods. 
There is a community.
Compared with other programming languages like
Python, R is relatively easier to learn, especially for
beginners.
R is free.

4



Let’s R.
 

Your installation path must not contain any non-English
characters. Otherwise, you will have troubles using it.

 
安装路径必须为纯英⽂，否则运⾏可能出错。

Download 

5

https://cloud.r-project.org/


Let’s RStudio.
 

Your installation path must not contain any non-English
characters. Otherwise, you will have troubles using it.

 
安装路径必须为纯英⽂，否则运⾏可能出错。

Download 

6

https://rstudio.com/products/rstudio/download/#download


Data Structures
 

Let’s start with a simple dataset (in R, a vector), consisting of
three numbers, 1, 2 and 4.

x <- c(1, 2, 4)
x

1
2

Here,  is the assignment operator. It means we are
assigning values on the right-hand side to . You can also
use  as the assignment operator.  stands for concatenate.
Here, we are concatenating the numbers 1, 2, and 4 to create
a vector.

←
x

= c

7



If you want to select the third element of , try
the followings:

x

x <- c(1, 2, 4)
x[3]

1
2

If you want to select the second to the third
element of , try the followings:x

x <- c(1, 2, 4)
x[2:3]

1
2

8



Scalars
 

Scalars, or individual numbers, do not really exist in R. As
mentioned earlier, what appear to be individual numbers
are actually one-element vectors.

x <- 8
x

1
2

Here,  is a vector that contains a single element, which is
8. 

x

9



Scalars
 

You can perform numerical operations on scalars. See the
following examples.

x <- 100
y <- 50.5
z1 <- x + y
z2 <- x - y
z3 <- x*y
z4 <- x/y
z5 <- y^2
z6 <- sqrt(x)
print(c(z1,z2,z3,z4,z5,z6))

1
2
3
4
5
6
7
8
9

10



Character Strings
 

Character strings are actually single-element vectors of
mode character.

x <- "abc"
y <- c("abc", "29")
x
y

1
2
3
4

Here,  is a vector that contains a single string, whereas  is
a vector containing two strings. Here, the quoted 29 is a
string, not a number. 

x y

11



String Operations
 

There are also operations defined on strings. See the
following example:

x <- "Welcome"
y <- "to"
z <- "Marketing"
result <- paste(x, y, z)
result0 <- paste0(x, y, z)
print(c(result, result0))

1
2
3
4
5
6

12



Data Frame

13



Data Frame
 

Data frame is the most important data structure in R. It is
similar to a table which contains rows and columns. Let us
consider the following table:

Name Salary Job
Alice 20,000 IT
Bob 19,000 Sales

Carol 23,000 Finance
Denis 22,000 IT

14



To create this data frame, we can adopt the
following code:

 employees <- data.frame(
   name = c('Alice', 'Bob', 'Carol', 'Denis'),
   salary = c(20000,19000,23000,22000), 
   job = c('IT', 'Sales', 'Finance', 'IT' ))

1
2
3
4

employees$job1

When you want to choose a specific column of
the data frame, try the following code:

15



When there are missing values in your data
frame, you can use NA to represent them.

employees <- data.frame(
  name = c('Alice', 'Bob', 'Carol','Denis'),
  salary = c(20000,NA,23000,22000),
  job = c('IT', 'Sales', NA, 'IT'))

1
2
3
4

16



Simple Statistics

17



You can easily obtain simple statistics of your
data, such as mean, median, variance:

vector <- c(0, 8, 4, 6, 7, 9, 5)
length(vector)
mean(vector)
median(vector)
var(vector)   # Variance
sd(vector)    # Standard Deviation
max(vector)   # Maximum
min(vector)   # Minimum
sort(vector)  # Sort, in increasing order

1
2
3
4
5
6
7
8
9

# stands for comments: The part after # is note
for programmers and is not processed by R.

18



Packages

19



An R package is a collection of R functions, data, and
documentation that is bundled together for a specific
purpose or to provide a specific set of functionalities.
 
For instance, the ggplot2 package is used for visualization
while the stringi package is used for string analysis.

20



Suppose that you want to install the package “ggplot2”, you
can enter the following in your R:

install.packages("ggplot2")1

And R will download the package from the default online
platform. Sometimes, the default platform is down, and you
want to download from another platform. In this case,
specify the URL of your platform directly:

install.packages("stargazer", 
                 repos = "http://cran.us.r-project.org")

1
2

21



If your path contains non-English letters or characters, you
may get an error message when installing the package. Here
are a few solutions:

Specify a different path for your package. You can refer
to the solution .
Use the cloud version RStudio .
Uninstall and reinstall your R/RStudio and specify a
path that only contains English letters.

here
here

22

https://ximarketing.github.io/class/package.html
https://posit.cloud/


When a package is successfully installed, you will see the
following message in your R console: “The downloaded
source packages are in...”
 
Each package only needs to be installed once on a computer
(as long as you do not remove it from your directory). When
you use the package, just inform R by stating:

library(ggplot2)1

23



Graphics

24



We begin with the most simple graphics with
the plot() function.

plot(c(1,2,3), c(1,2,4))1

You will get three points: (1, 1), (2, 2), (3, 4).

25



You can use function ablines() to add lines to
your graphics. Consider the following code:

x <- c(1,2,3)  
y <- c(1,3,8)  
plot(x, y)  
lmout <- lm(y~x)
abline(lmout)

1
2
3
4
5

Here, we first show the scatter plots of  and .
Then, we use the regression function lm(y~x),
which will be covered later, to generate a
regression line, and add the fitted regression
line to the previous figure.

x y

26



When creating your plot, you can also specify the type, lty,
and pch of your plots. 

The type parameter determines the type of plot to be
created (e.g., points only, line only, or both).
The lty (line type) parameter sets the line type for lines
plotted in the graph (e.g., solid or dashed line).
The pch (plotting character) parameter determines the
type of symbol or shape used to represent data points in
a scatter plot (e.g., circle, diamond, or triangle).

27



x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
y <- c(9, 7, 7, 4.5, 6, 7.8, 7, 3, 6, 2, 4)
plot(x, y)
plot(x, y, type = "b")
plot(x, y, pch = 17)
plot(x, y, pch = 2, lty = 2, type = "b")

1
2
3
4
5
6

Click  for the meaning of type.
Click  for the meaning of pch.
Click  for the meaning of lty.

here
here
here

28

https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot
http://www.sthda.com/english/wiki/r-plot-pch-symbols-the-different-point-shapes-available-in-r
http://www.sthda.com/english/wiki/line-types-in-r-lty


We consider next the visualization of a data frame. We first
install and use the library ggplot2, and then create a data
frame containing two columns, , .x y

library(ggplot2)
x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
y <- c(9, 7, 7, 4.5, 6, 7.8, 7, 3, 6, 2, 4)
data <- data.frame(x, y)
ggplot(data, aes(x, y)) + geom_point()

1
2
3
4
5

29



We next add gender information to the data frame and use
colors to represent different gender.

library(ggplot2)
 
data <- data.frame(
  x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
  y <- c(9, 7, 7, 4.5, 6, 7.8, 7, 3, 6, 2, 4),
  gender = c("M", "F", "F", "M", "M", "F", "F", "M", "F", "F", "M")
)
 
# Specify colors for each gender
colors <- c("red", "blue")
 
ggplot(data = data, aes(x, y, color = gender)) +
  geom_point() + scale_color_manual(values = colors)

1
2
3
4
5
6
7
8
9
10
11
12
13

30



A wife said to her husband, a programmer, in the morning,
“Please buy 10 buns on your way home. If you see someone
selling watermelon, buy one.”
When her husband returned with just one bun, the wife was
frustrated. “Why did you only bring one bun?” she asked.
He replied, “Because I saw someone selling watermelon.”

⽼婆给当程序员的⽼公打电话：下班顺路买⼗个包⼦，如果
看到卖西⽠的，买⼀个。当晚⽼公⼿捧⼀个包⼦进了家门。
⽼婆怒道：你怎么只买⼀个包⼦？！⽼公甚恐，喃喃道：因
为我真看到卖西⽠的了。"

31



Logical Operatorations

32



In R, we use “if-else” logic to construct logical
operations. See the following example used for
detecting the sign of a number.

x <- 0
if (x < 0) {
  print("Negative number")
} else if (x > 0) {
  print("Positive number")
} else
  print("Zero")

1
2
3
4
5
6
7

33



The watermelon story:

buns = 10
if (there is watermelon){
 buns = 1
}

1
2
3
4

34



For Loop

35



Suppose that you want have a vector and you
want to print all elements in the vector. You can
do the followings.

vector = c(1, 3, 5, 7)
print(vector)

1
2

This prints all elements together. If, however,
you want to print each element one by one,
what should you do?

36



We can implement the following code to print
each element one by one. 

vector = c(1, 3, 5, 7)
for (item in vector)
  print(item)

1
2
3

Here, item points to each element in your vector
one by one, and then we print the value of item.

37



You can also add more operations in your for
loop!

vector = c(1, 3, 5, 7)
for (item in vector){
  item = item^2 + 1
  print(item)}

1
2
3
4

38



Input/Output

39



File I/O
 

Previously, we specify all our data in the RStudio directly.
This is inconvenient when you have a very large table: You
don’t want to type millions of data points one by one. Also,
when we get the result, we simply print it on the screen,
which is also inefficient when you have large output. Next,
we see how we can read and write files to your local
computer.  

40



File I/O
 

When inputting/outputting data from your disk, you must
specify the folder that contains your file or the place your
files should be saved. There is a default folder used if you
don’t specify it. Here is my default folder (on my Windows
System):

getwd()1

41



File I/O
 

You can also choose a different default folder (but make
sure this folder exists on your disk):

setwd('C:/Users/Li Xi/Dropbox/Marketing Classes/Algorithm')
getwd()

1
2

42



Writing to a text document:
 

You need to create a file first and use the writeline function
to write to the document:

file1<-file("output.txt")
writeLines(c("Big","Data"), file1)
close(file1)

1
2
3

43



Reading a text document
 

We can either read a text file from your local folder or from
the Internet. Let's see how to read from the Internet first.

file <- readLines("https://ximarketing.github.io/data/input.txt")
print(file)

1
2

44



Reading a text document
 

If the document is in your default folder, you can do the
followings to read it. 

file <- readLines("input.txt")
print(file)

1
2

If, however, there is no such a document in your default
folder, you will simply receive an error message.

45



Writing to a CSV file
 
It is more convenient to write your table to a CSV file (i.e.,
excel spreadsheet). Here is how to create and write to a CSV
file.

data <- data.frame(
  Name = c("John", "Jane", "Michael"),
  Age = c(25, 30, 35),
  City = c("New York", "London", "Paris")
)
write.csv(data, file = "myfile.csv", row.names = FALSE)

1
2
3
4
5
6

46



Reading a CSV file
 
We can also read data from an existing CSV file, either from
the Internet or your local folder. Here is how to read from
the Internet:

url = "https://ximarketing.github.io/class/teachingfiles/r-exercise.csv"
mydata <- read.csv(url)

1
2

The new variable, mydata, is a data frame.

47



Analyzing a Data Frame

48



Data frame is the most commonly used data structure in R.
As mentioned earlier, a data frame can be viewed as a table
with rows and columns. We continue to import the previous
CSV file from the Internet and perform data operations on
it.

url = "https://ximarketing.github.io/class/teachingfiles/r-exercise.csv"
mydata <- read.csv(url)

1
2

49



You can use the head function to show the first a few rows
of the dataset. 

head(mydata)   # show first 5 rows
head(mydata, n = 10) # show first n = 10 rows

1
2

You can use the nrow and ncol functions to show the
number of rows and columns in the data frame.

nrow(mydata)
ncol(mydata)

1
2

50



You can use the summary function to obtain the summary
statistics of your dataset.

summary(mydata)1

51



You can use the hist function to plot the histogram of a
variable (i.e., column) of your data frame.

hist(mydata$Rating)1

52



You can use the subset function to choose a subset of your
original data frame. For example, let’s choose the rows with
review ratings equal to or smaller than 4.

subdata <- subset(mydata, Rating <= 4)
head(subdata)

1
2

53



Linear Regression

54



Linear regression is arguably the most basic and widely
used type of data analysis. Image that you want to figure
out how one’s rating is affected by his or her experience,
you can run the following regression:

Rating =i α+ β ⋅ Experience +i e ,i

where  is the intercept (constant term),  is the coefficient
for experience,  is the individual index and  is an error
term.

α β

i ei

55



To run the regression, consider the following code:

Rating =i 4.33 − 0.016 ⋅ Experience +i e .i

result <- lm(Rating ~ Expertise, data = mydata)
summary(result)

1
2

56



The significance (i.e., -value) of the coefficient for
experience is .  Typically, when , we say
the coefficient is significant. Here, because , we can
state that experience significantly affects your review rating.

p

p < 2 × 10−16 p < 5%
p≪ 5%

57



To make predictions based on your regression result, try the
followings: 

prediction <- predict(result, 
data.frame(Expertise = 4, Rating = 2))
prediction

1

2

58



Let’s now move from simple regression to multiple
regression, i.e., a regression with more than one
independent variables on the right-hand side. 

result <- lm(Votes ~ Expertise + Rating + 
factor(Purpose), data = mydata)
summary(result)

1

2

Here, Purpose is a string, not a variable, and
factor(Purpose) means we are treating Purpose as a fixed
effect. What is a fixed effect?

59



What is a fixed effect?
 

Instead of treating purpose as one variable, we create
multiple variables from it, and include them in our
regression. For example, one of the purpose is family. Then,
we can create a new variable family, which is defined as
follows.

family = {1
0

if purpose is family

otherwise

60



Here, we take business as the benchmark and compare other
purposes against it. What type of purpose generates most
votes?

61



To make predictions, try:

prediction <- predict(result, 
data.frame(Expertise = 4, Rating = 2, Purpose = 
"family"))
print(prediction)

1

2

62



We can use the stargazer package to help
organize the output of the above analysis.

library(stargazer)
result <- lm(Votes ~ Expertise + Rating + factor(Purpose), 
data = mydata)
summary(result)
stargazer(result, title = "regression output", align = TRUE, 
out = "regression.html", type = "html")

1
2

3
4

63



We can also put multiple regression results together.

result0 <- lm(Votes ~ Expertise, data = mydata)
result1 <- lm(Votes ~ Expertise + Rating, data = mydata)
result2 <- lm(Votes ~ Expertise + Rating + factor(Purpose), 
data = mydata)
stargazer(result0, result1, result2, title = "regression 
output", align = TRUE, out = "regression.html", type = 
"html")

1
2
3

4

64



Optional Reading:

65



Reminder: Group Information Submission

Each group consists of up to 8 students (and at least 1).
You need to choose a name for your group, e.g., “Marketers”,
“Fantastic”, “A Plus”…
Submit your group info on Moodle on or before Dec 3, 23:59.
Let the TA Ray Song (soongray@hku.hk) know if you cannot
find a group.

66



Next Class

Download and Install 
(It is free but you need to sign up first)

Tableau Public

67

https://www.tableau.com/products/public/download


Thank you!

68


